# มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบปลายภาค ประจำภาคการศึกษา 2

ปีการศึกษา 2551

วันที่ 20 กุมภาพันธ์ 2552

ห้องสอบ A 401

เวลา 13.30 - 16.30.

วิชา CE 220-504: Introduction to Finite Element Method

| ชื่อ-สกุล | •••••• | • • • • • • • • • • • • • • • • • • • • |
|-----------|--------|-----------------------------------------|
| รหัส      |        |                                         |

# คำชี้แจง

- 1.ข้อสอบทั้งหมดมี 6 ข้อ คะแนนรวม 70 คะแนน ดังแสดงในตารางข้างล่าง
- 2.ข้อสอบมีทั้งหมด 5 หน้า (รวมปก) ผู้สอบต้องตรวจสอบว่ามีครบทุกหน้าหรือไม่ (ก่อน ลงมือทำ)
- 3.ให้ทำหมดทุกข้อลงในสมุดคำตอบ
- 4.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 5.ห้ามหยิบ หรือยืมสิ่งของใดๆ ของผู้อื่นในห้องสอบ

## 6. Open Books

ตารางคะแนน

| VI 10 10/1 00 70 70 |           |     |
|---------------------|-----------|-----|
| ซ้อที่              | คะแนนเต็ม | ได้ |
| 1                   | 15        |     |
| 2                   | 10        |     |
| 3                   | 5         |     |
| 4                   | 10        |     |
| 5                   | 15        |     |
| 6                   | 15        |     |
| รวม                 | 70        |     |

### Problem 1 (15 Points)

To determine the element stiffness matrix of a tapered beam,



whose width is constant b = 1, but depth h varies linearly over the element as shown in the figure.

We have to integrate

$$\mathbf{K} = \int_{0}^{1} B^{2}(x)EI(x)dx$$

where B(x) = 6 - 12x.

Use Gauss quadrature to integrate this problem by using the minimum n-point that can get the exact result.

#### Problems 2 (10 Points)

Compute the "lumped" nodal forces  $f_1$ ,  $f_2$ ,  $f_3$  and  $f_4$  equivalent to the linearly-varying distributed surface load q for the finite element layout defined in the following figure. Use both NbN and EbE lumping. For example,  $f_1 = 3q/8$  for NbN. Check that  $f_1 + f_2 + f_3 + f_4 = 6q$  for both schemes (why?). Note that q is given as a force per unit of vertical length.



#### **Problems 3 (5 Points)**

The free-free stiffness equations of a superelement are

$$\begin{bmatrix} 88 & -44 & -44 & 0 \\ -44 & 132 & -44 & -44 \\ -44 & -44 & 176 & -44 \\ 0 & -44 & -44 & 220 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \\ 15 \\ 20 \end{bmatrix}$$

Eliminate  $u_2$  and  $u_3$  from the above equation by static condensation (using the explicit inverse formulas), and show (but do not solve) the condense equation system.

#### Problem 4 (10 Points)

Find the transformation equation, the Jacobian matrix for the eight-node element shown in the following figure.



#### Hint:

The transformation equations are (contiued)

$$x = \sum_{i=1}^{8} x_i \hat{\psi}_i(\xi, \eta)$$
$$y = \sum_{i=1}^{8} y_i \hat{\psi}_i(\xi, \eta)$$

The corresponding shape functions of the eight-node rectangular element.



#### **Problem 5 (15 Points)**

Construct the shape functions of the 6-node triangular element (x,y co-ordinate). Show intermediate steps of calculation.



### Problem 6 (15 Points)

Identify the symmetry and antisymmetry lines in the two-dimensional problems illustrated in the following figure. They are:

- (a) a circular disk under two diametrically opposite point forces (the famous "Brazilian test" for concrete)
- (b) the same disk under two diametrically opposite force pairs
- (c) a clamped semi annulus under a force pair oriented as shown
- (d) a stretched rectangular plate with a central circular hole.
- (e) and (f) are half-planes under concentrated loads.

Having identified those symmetry/antisymmetry lines, state whether it is possible to cut the complete structure to one half or one quarter before laying out a finite element mesh. Then draw a coarse FE mesh indicating, with rollers or fixed supports, which kind of displacement BCs you would specify on the symmetry or antisymmetry lines.

Note: Do all sketches on your paper, not on the printed figures.

