PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Academic Year: 2008

Time: 9:00-12:00

Room: หัวหุ่นยนต์

Final Examination: Semester II

Subject: 241-650 Principles of Pattern Recognition

Date: 23 February 2009

Instructions: This exam has 4 proble pages for scratch work. This exrelated materials are allowed.	ems, 10 pages and kam is <u>open book</u>	65 points. You may use the back of the so books, notes, calculators, and other
<u>Problem</u>	<u>Points</u>	Score
1	25	
2	20	
3	10	
4	10	
Name:		

"ทุจริตในการสอบ โทษขั้นต่ำ คือ พักการเรียน 1 ภาคการศึกษา และปรับตกในรายวิชาที่ทุจริต"

Student ID:

Problem 1

Given two 3-state hidden Markov models each one is defined by a transitional probability matrix and a symbol emission probability matrix as shown below:

HMM 1:
$$B1 = \begin{bmatrix} 0.6 & 0.4 & 0 \\ 0 & 0.1 & 0.9 \\ 0 & 0 & 1 \end{bmatrix} \qquad B1 = \begin{bmatrix} 0.2 & 0.2 & 0.2 & 0.1 & 0.3 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.4 & 0.2 & 0.2 & 0.1 & 0.1 \end{bmatrix}$$

HMM 2:
$$A2 = \begin{bmatrix} 0.7 & 0.3 & 0 \\ 0 & 0.8 & 0.4 \\ 0 & 0 & 1 \end{bmatrix} \qquad B2 = \begin{bmatrix} 0.2 & 0.2 & 0.3 & 0.2 & 0.1 \\ 0.2 & 0.1 & 0.4 & 0.2 & 0.1 \\ 0.5 & 0.1 & 0.2 & 0.1 & 0.1 \end{bmatrix}$$

Let the set of possible emitting symbols V_k be $\{a, b, c, d, e\}$ Ignore the entry and exit states and assume that state 1 is the first state and state 3 is the last state. Answer the following questions:

a) Sketch the two HMM's and label each link with the appropriate probability. (5 points)

b) Use Trellis diagram to determine the most likely model that generates the following symbol sequence:

$$V_k = \{a, b, d\}$$
 (15 points)

c) From the most likely model obtained in part (b), determine the most likely state sequence. (5 points)

Problem 2

Given the following feature vectors and the following neural network structure

Class 1		Class 2	
X_1	X ₂	X_1	X ₂
2	1	-1	-1
1	2	-2	1

Train the neural networks using the back propagation algorithm under the following conditions:

- 1) Set target values as follow: Y = 1 for class 1 and Y = 0 for class 2
- 2) Let the initial weights be w1 = 0.5, w2 = -0.5, and w3 = 0.2
- 3) Learning rate = 0.2
- 4) Train the network by presenting every pattern from both classes to the network. Show the error and weight update for each pattern
- 5) Show the weights after one round of training
- 6) Repeat 4) and 5) to train the network for another round

(20 points)

Problem 3
Given 2 classes of 2D patterns, each having 3 feature vectors, as the following:

a) Determine the within class covariance matrices of Class 1 and Class 2 (5 points)

b) Compute the between class covariance matrix (3 points)
c) By inspecting the within class covariance matrices and the between class covariance matrix obtained from part a) and b), what can you say about the data? (2 points)

Problem 4

Determine and sketch the decision boundary of the following perceptron (10 points)

Where f(net) = sgn(net)

------ End of Exam -----