

Prince of Songkla University Faculty of Engineering

Final Examination: Semester II Date: February 16th, 2009

Subject: 235-402 Geotecniques

Academic Year: 2008 Time: 01.30-04.30 p.m.

Room: R200

Instructions

1. This is a closed examination, attempts question (4) in total 8 pages.

2. Answer all questions in the given papers and do rear papers allowed

3. Dictionary or electronic-dictionary, calculator without memory program and necessary stationary are allowed

4. Write your name in each page and returned all papers to controllers

5. Total marks are 110 or 35 % of subject.

Part	Full Scores	Assigned Scores
1	35	
2	20	
3	25	
4	30	
Total scores	110	

"ทุจริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้น และพักการเรียน 1 ภาคการศึกษา สูงสุด ให้ออก"

Name	. Surname ID .	• • • • • • • • • • • • • • • • • • • •

Bonne Chance et bon courage
Danupon Tonnayopas
Instructor
12 Feb 2009

Name	Surname	<i>ID</i>	
L. Cut novy along along	a road in the sandstone mounta tor of safety. From measurem	ainous. It is found a tension crack nent data in field and result of l	on slope
- Height of cut slope	20 m		
- Dip of cut slope $= 6$	55°		
- Dip angle of fault p	plane failure = 35°		
- Depth of tension cr	rack = 6.8 m		
- Water depth in tens	sion crack = $5.5 \text{ m} (Z_w)$		
- Depth from upper	slope to bottom of tension cracl	k = 16.8 m	
	anite 25.5 kilonewton/m ³		
- Cohesion = 45 kilo	onewton/m ²		
- Peak internal fricti	on angle of rock = 35° and resi	dual internal friction angle of rocl	$k = 25^{\circ}$

Name Surname	ID)
--------------	----	---

2. An excavation made during open a rubber hill slope was inclined 50 degrees with the geometry shown below. The overburden in the slope is uniform saturated clay 6.2 m in thick with saturated density of 1.75 tonnes/m³. The internal friction angle of overburden was 20 degrees and cohesion was 13.3 tonnes/m². To determined the factor of safety of the hill slope? If density of water is 1.0 tonne/m m³ (20 points)

.....

Name Surname	<i>ID</i>
--------------	-----------

3. To determine the thickness of the surface layer in a certain area, the following readings were obtained from refraction seismic records. Find the velocities in the upper and lower beds and determine the depth of underlie layers? (25 points)

Geophone #	Distance, m	Time, msec.
1	1.5	2.5
2	3.0	7.2
3	5.0	9.0
4	7.0	9.8
5	8.0	10.8
6	10.0	12.7
7	12.0	13.3
8	13.0	13.7
9	15.0	15.5
10	17.0	16.1
11	19.0	17.0
12	20.0	17.4
13	21.0	18.9
14	23.0	19.3

Name	Surname	IL)
4. It is investigated that struct have been identified:	tural mapping that	the following geometrical and	structural features
Feature	dip angle	dip direction	
Overall slope face	50	200	
Individual benches	70	200	
Joint set J ₁	80	230	
Joint set J ₂	80	040	
Joint set J ₃	70	325	
If internal friction angle of individual benches by stability analysis. (30 po	ereo-net method.	neck slope stability both the ov Determine type of potential	erall slope and the slope failures and

Name ID ID

Available Equations

$$X = \frac{\sin \theta_{24}}{\sin \theta_{45} \cdot \cos \theta_{2na}} \quad ; \qquad Y = \frac{\sin \theta_{13}}{\sin \theta_{35} \cdot \cos \theta_{1nb}} \qquad A = \frac{\cos \psi_a - \cos \psi_b \cdot \cos \theta_{na,nb}}{\sin \psi_5 \cdot \sin^2 \theta_{na,ab}} \quad ;$$

$$Z_{2} = \frac{x_{2}}{2} \sqrt{\left(\frac{V_{3} - V_{2}}{V_{3} + V_{2}}\right)} + Z_{1} \left[\frac{V_{3} \sqrt{V_{2}^{2} - V_{1}^{2}} - V_{2} \sqrt{V_{3}^{2} - V_{1}^{2}}}{V_{1} \sqrt{V_{3}^{2} - V_{2}^{2}}}\right]; F = \frac{c}{\gamma_{sat} \tau \cos^{2} \beta \cdot \tan \beta} + \frac{\gamma_{sat} - \gamma_{w}}{\gamma_{sat}} \frac{\tan \phi}{\tan \beta}$$

$$B = \frac{\cos \psi_b - \cos \psi_a \cdot \cos \theta_{na,nb}}{\sin \psi_5 \cdot \sin^2 \theta_{na,nb}} \qquad \rho = \pi (L^2 / 2l) R ; \qquad \rho = 2\pi a \cdot R$$

$$F = \frac{c.A + (W\cos\psi_P - U - V\sin\psi_P)\tan\phi}{W\sin\psi_P + V\cos\psi_P}$$

$$A = \frac{(H - z)}{\sin \psi_n} \qquad ; \qquad U = \frac{1}{2} \gamma_w z_w . A$$

$$V = \frac{1}{2} \gamma_w . z_w^2 \qquad \qquad z = H. \left(1 - \sqrt{\cot \psi_f . \tan \psi_p}\right)$$

$$b = H.\left(\sqrt{\cot\psi_f.\cot\psi_p} - \cot\psi_f\right)$$

$$\mathbf{W} = \frac{1}{2} \gamma_r . \mathbf{H}^2 \left\{ \left[1 - \left(\frac{\mathbf{Z}}{\mathbf{H}} \right)^2 \right] \cot \psi_p - \cot \psi_f \right\}$$

$$\mathbf{W} = \frac{1}{2} \gamma . \mathbf{H}^2 \left\{ \left(1 - \frac{\mathbf{Z}}{\mathbf{H}} \right)^2 \cot \psi_p \left(\cot \psi_p . \tan \psi_f - 1 \right) \right\}$$

$$F = \frac{cA + (W\cos\psi_p - U - V\sin\psi_p + T\cos\theta)\tan\phi}{W.\sin\psi_p + V.\cos\psi_p - T\sin\theta}$$

$$F = \frac{cA + \left\{ W(\cos\psi_p - \alpha\sin\psi_p) - U - V\sin\psi_p \right\} \tan\phi}{W(\sin\psi_p + \alpha\cos\psi_p) + V\cos\psi_p} ; \qquad U = \frac{1}{4}\gamma_w \frac{H_w^2}{\sin\psi_p}$$

$$t_{i} = \frac{2Z_{1} \cdot \sqrt{V_{2}^{2} - V_{1}^{2}}}{V_{1}V_{2}} \qquad Z_{1} = \frac{x_{c}}{2} \cdot \sqrt{\left(\frac{V_{2} - V_{1}}{V_{2} + V_{1}}\right)}$$

$$\mathbf{W} = \frac{1}{2} \gamma_r \cdot \mathbf{H}^2 \left(\cot \psi_p - \cot \psi_f \right)$$

