มหาวิทยาลัยสงขลานกรินทร์ กณะวิศวกรรมศาสตร์

สอบกลางภาค ประจำภาคการศึกษา 1	ปีการศึกษา 2552
วันที่ 27/7/ 2552	เวลา <u>9.00 — 12.00</u> น.
วิชา 220-501 Matrix Structural Analysis	13.30~16.30 4
ห้องสอบ AZo I	
ง ชื่อ-สกุล	รหัส

คำหื้แกง

- 1.ข้อสอบทั้งหมคมี 7 ข้อ คะแนนรวม 240 คะแนน คั้งแสคงในตารางข้างถ่าง
- 2.ข้อสอบมีทั้งหมด 6 หน้า ผู้สอบต้องตรวจสอบว่ามีครบทุกหน้าหรือไม่ (ก่อนลงมือทำ) และห้ามแกะหรือฉีกข้อสอบออกจากเล่ม
- 3.ให้ทำหมดทุกข้อลงในสมุดคำตอบ
- 4. ทูจริตจะได้ E
- 5.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 6.กระดาษทดที่แจกให้ไม่ต้องส่งคืน ถ้าไม่พอขอเพิ่มที่อาจารย์คุมสอบ
- 7.ห้ามหยิบ หรือยืมสิ่งของใดๆ ของผู้อื่นในห้องสอบ
- 8. อนุญาตให้นำ Dictionary เข้าห้องสอบได้
- 9. One page of note allowed all books allowed

10. GOOD LUCK

ตารางคะแนน

ข้อที่	คะแนนเต็ม	ใค้
1	40	
2	40	
3	40	
4	30	
5	30	
6	30	
7	30	
รวม	240	

Lecturer: Asst. Prof. Dr. Suchart Limkatanyu

รหัส.....

Problem 1. (40 points) Consider the beam shown. Using the strong form of the problem (beam differential equation + boundary conditions), find the transverse displacement and moment fields.

Problem 2. (40 points)

(a) (20 points)

What is the degree of static indeterminacy (NOS) and kinematic indeterminacy (NOK) for the structures shown below?

Note: NOK is the number of free degrees of freedom

(b) (20 points)

Number the degrees of freedom (both constrained and unconstrained) and the basic element deformations based on the simply-supported beam model. It is noted that all elements can be considered as inextensible. Furthermore, the flexural stiffness of elements 1, 2, and 3 is so large that they can be treated as infinitely rigid in flexure.

Problem 3. (40 points) Consider the structure shown below.

- (a) Identify its degree of statical indeterminacy
- (b) Systematically number the element forces Q using the simply supported beam model as basic system
- (c) Write down the matrix equilibrium equations associated with free degrees of freedom.

Problem 4: (30 points) Assume that axial deformation are significant in all members. Identify the basic element deformations based on the simply-supported beam model and set up the structural compatibility equations associated with free degrees of freedom.

Problem 5: (30 points) With the assumption that all frame elements are inextensible, the mechanism in the figure below has two independent free displacement degree of freedom \tilde{U}_1 and \tilde{U}_2 . Determine the global displacements at all nodes corresponding to unit values of \tilde{U}_1 and \tilde{U}_2 .

Problem 6: (30 points) Consider the simply-supported beam subjected to the sinusoidal distributed load $w_y(x)$ along the length as shown in the figure below.

The equilibrated external and internal force systems are given as:

Verify that the magnitude of $w_y \left(\frac{L}{2}\right)$ is w_{y0} through the virtual displacement principle based on the following virtual displacement field:

$$\delta v(x) = -\left(\frac{1}{2} - \cos\left(\frac{\pi x}{2L}\right)\right)$$

Problem 7: (30 points) The structure in the figure is subjected to loading that yields the following total deformation vector **V**. The element connectivity is as follows: 1-2, 2-3, 2-4, 3-4, and 4-5. Determine the vertical displacement at note 3 and the horizontal displacement at node 4.

