มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค: ประจำภาคการศึกษาที่ 1

ปีการศึกษา: 2552

วันที่: 30 กรกฎาคม 2552

เวลา : 09.00-12.00 น.

วิชา: 220-502 Advanced Mechanics of Solids

ห้อง: R201

คำอธิบาย

- 1. ข้อสอบมีจำนวนทั้งหมด 5 ข้อ
- 2. ให้เลือกทำข้อสอบ 4 ข้อ
- 3. อนุญาตให้นำเครื่องคิดเฉขทุกชนิดเข้าห้องสอบได้ และให้นำตำราเรียน, เอกสารทุกชนิด เข้า ห้องสอบได้
- 4. ไม่ต้องส่งกระดาษทดเลขที่แจกให้คืน

ข้อ	คะแนนเต็ม	ได้คะแนน
1	25	
2	35	
3	25	
4	25	
5	25	** · · · · · · · · · · · · · · · · · ·
รวม		

ผู้ออกข้อสอบ: บุญ จันทร์ทักษิโณภาส

- 1. (25 points) At a point in a member, the stress components are found to be $\sigma_{xx} = 18.8 \ MPa, \quad \sigma_{yy} = 5.0 \ MPa, \quad \sigma_{zz} = 25.0 \ MPa, \quad \sigma_{xy} = -7.0 \ MPa, \quad \sigma_{xz} = -15.0 \ MPa, \quad \sigma_{yz} = 0.0 \ MPa$
- (a) Determine magnitudes of the principal stresses and the maximum shear stress.
- (b) Determine magnitudes of the **normal** and **shear** stress components acting on a plane whose normal lies in the x-y plane and making an angle of 60° with the x-axis.
- (c) Determine the direction of the **minimum principal stress** (σ_3).

2. (35 points)

A delta rosette shown below is cemented to a point on the free surface of a **plane stress** member (stressed in the x-y plane). From measurements, $\varepsilon_a = 2.580x10^{-4}$, $\varepsilon_b = 1.250x10^{-4}$, $\varepsilon_c = -1.800x10^{-4}$. (a). (10 points) Determine the magnitudes and orientations of the **principal strains** in the x-y plane at that point. (b) (15 points) Determine the magnitudes of **stress components** at that point If the member **is an isotropic material** with $\mathbf{V} = \mathbf{0.33}$, and $\mathbf{E} = \mathbf{720}$ GPa.

(c) (10 points) Determine the magnitudes of stress components at that point if the member is an orthotropic material with orthotropic axes x, y, z; and with the following material properties, $E_x = 15.00~GPa$, $E_y = 12.00~GPa$, $E_z = 6.00~GPa$, $G_{xy} = 11.00~GPa$, $G_{yz} = 10.00~GPa$, $G_{yz} = 2.500~GPa$, $G_{yz} = 0.420$, $G_$

- 3. (25 points) A rectangular plate OABC of dimensions 1000 mm x 2000 mm in the x-y plane shown below is loaded so that the plate is in the state of **plane strain**, ($\mathbf{\mathcal{E}}_{zz} = \mathbf{\mathcal{E}}_{zy} = \mathbf{\mathcal{E}}_{zy} = \mathbf{\mathcal{E}}_{y} = \mathbf{\mathcal{E}}_{y}$), and passes to a new position O*A*B*C*
- (a). Determine the **displacements** (u, v), of the plate for the deformation shown in term of x, y coordinates.
- (b). Determine the strain components at the point B of the plate, and evaluate the maximum strain at B.
- (c). Determine the strain at the point B in the direction of the line BO.

4. (25 points) A closed-end thin wall steel tube with the yield strength Y = 320 MPa, has outside diameter 122 mm and inside diameter 118 mm (ie. mean diameter of 120 mm and wall thickness of 4 mm). It is subjected to an internal pressure q = 6 MPa, a bending moment M = 1.20 kN.m, and an axial external applied load P, as shown below. Using a safety factor SF = 2.00, determine the maximum allowable value of the axial load P based on maximum shear stress criterion of failure.

- 5. (25 points) A solid metal shaft of diameter d = 120 mm, is subjected to an axial load P = 220.0 kN, a bending moment M = 10.00 kN.m, and a torque T = 15.0 kN.m.
- (a) If yield strength for the metal is Y = 300 MPa, and assuming that failure occurs at the initiation of yielding, determine the factor of safety based on the **octahedral shear stress criterion** of failure.
- (b) If the metal is a brittle material with ultimate strength, $\sigma_{u}=200~MPa,~E=200~GPa,~\nu=0.29$, determine the factor of safety based on the **maximum principal strain criterion** of failure.

