PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester I Academic Year: 2009

Date: July 26, 2009 Time: 9:00-12:00

Subject: 230-600 Advanced Engineering Room: หัวหุ่นยนต์

Mathematics for Chemical Engineers

อนุญาตให้นำเอกสารและเครื่องคำนวณทุกชนิดเข้าห้องสอบได้ ทุจริตในการสอบโทษขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการศึกษา 1 ภาคการศึกษา

Please do all 4 questions. Show all your work to receive full or partial credit. Final score is 135. (Total page = 8, including first page)

Question #	Total Score	Score
1.1	15	
1.2	10	
1.3	15	
1.4	15	
2	20	- · · · · · · · · · · · · · · · · · · ·
3	30	
4	30	
Total	135	

สุกฤทธิรา รัตนวิไล ผู้ออกข้อสอบ 1. Solve the differential equation. (55 scores)

1.1
$$y'' + 2y' - 3y = 4e^x$$
 (15 scores)

1.2 $y'' - y' = xe^x$ (10 scores) Using Inverse Operator Method to solve this problem.

1.3
$$x^2y' + 2xy - y^3 = 0$$
 (15 scores)

1.4 $x^2y' + 2xy - y^3 = 0$ (15 scores)

Using undetermined coefficient to solve this problem.

2. Please show how to solve this differential equation by Frobenius Method or Power Series. (20 scores)

$$2x^2y'' - xy' + (1+x)y = 0$$

3. Consider the consecutive second order, irreversible reactions occurring in a batch reactor

$$A + S \xrightarrow{K_1} X$$

$$X + S \xrightarrow{K_2} Y$$

$$Y + S \xrightarrow{K_3} Z$$

If one mole of A and three moles of S are initially added, determine the mole fraction of X remaining after half the A is consumed. Assume that $K_3=K_2$ and $K_2/K_1=2$. (30 scores)

- 4. Cylindrical tank is being filled from an initially empty state at a liquid rate of 10 L/min. The flat tank bottom has corroded and sustains a leak through a small hole of area which has 2 cm. in diameter. If the tank has 35 cm. and 10 m. in diameter and height, respectively. (30 scores)
 - 4.1 Formulate differential equation between height (h) and time (t)
 - 4.2 How long does it take to get a steady state liquid height in the tank?

The dynamic relationship of tank height [h(t)] and volumetric leak rate (q) is following:

$$q = A_{leak} \sqrt{2gh(t)}$$

 $A_{leak} = leak area$

 $g = gravitational acceleration, 9.81 m/s^2$

//End