Name II	O Code
---------	--------

Prince of Songkla University Faculty of Engineering

Mid term Examination : Semester I

Date : August 2, 2009

Subject: 225-345 Quality Control

Academic Year: 2009

Time: 13:30-16:30

Room: R300, หัวทุ่นยนต์

้ทุจริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้น

และพักการเรียน 1 ภาคการศึกษา

PART A

Instructions:

- 1. There are 2 parts (A and B), 6 questions, 100 points.
- 2. Attempt all questions.
- 3. Books and note are allowed.
- 4. A calculator is allowed.
- 5. Borrowing things from other students is prohibited.

Part	Prob. No.	Full Score	Score
	1	20	
A	2	15	
	3	15	
	4	15	
В	5	25	
	6	10	
Total		100	

Assoc. Prof. Dr. Sunchai Klinpikul Asst. Prof. Dr. Nikorn Sirivongpaisal Instructors

Name ID Code

1. Control charts for variables (\overline{X} and R) are in use with the following values :

$$\overline{\overline{X}} = 360 \qquad \overline{R} = 8.90$$

Both charts exhibit control and the distribution is normal.

- (a) Determine the control charts for \overline{X} and R charts at 3-sigma control limit. (5 points)
 - (b) What is the error type I of the \overline{X} chart? (7 points)
- (c) Suppose the mean of the process shifts to 357, what is the probability that the shift will not be detected on the first sample of the following shift? (8 points)

- 2. A process is being controlled with a fraction nonconforming control chart. The process average has been shown to be 0.07. Three sigma control limits are used, and the procedure calls for taking daily samples of 100 items.
 - (a) Calculate the control limits of the control chart. (5 points)
- (b) If the process average is suddenly shift to 0.10, what is the probability that the shift would be detected on the first subsequent sample? (10 points)

- 3. A continuous processing line of a particle board company has an average production rate of 600 pieces per hour. The average fraction defective is 1.2%. The company uses the continuous sampling plan with a fraction inspection rate of 1 piece for every 5 minutes.
- (a) Using AOQL 1.0%, determine the sampling plan of the company. (5 points)
 - (b) Calculate AOQ of the process. (10 points)

D Code
D Code.

PART B

Part	Problem no.	Full Score	Score
В	4	15	
	5	25	
	5.1	5	
	5.2	5	
	5.3	15	
	6	10	

Asst. Prof. Dr. Nikorn Sirivongpaisal Instructor

Name	. ID Code
------	-----------

4. Two double sampling plans for defectives are as follows:

Plan 1: AQL = 4%

Sample no.	Sample size	Acceptance no.	Rejection no.
1	8	0	2
2	8	1	2

Plan 2: AQL = 6.5%

Sample no.	Sample size	Acceptance no.	Rejection no.
1	8	0	2
2	8	1	2

Assuming that lot size is large.

- a.) What is the probability that the lot will be rejected in the first sampling for each plan? (5 points)
- b.) What is the probability of acceptance for each plan? Which plan has higher probability of acceptance? (10 points)

- 5. Suppose that a vendor ships components in lots of size 5000. A single sampling plan with n=50 and c=2 is being used for receiving inspection. Rejected lots are 100% inspected, and all defective items are reworked and returned to the lot.
 - 5.1 Find the level of lot quality (fraction defective) that will be rejected 90% of the time.

5.2 Design a single sampling plan with c=0 that will give a 0.90 probability of rejection of lots having the quality level found in 5.1.

5.3 Suppose that incoming lots are 0.5% defective. What is the probability of rejecting these lots under both plans from 5.1 and 5.2? Calculate the ATI, AOQ, and AOQL for both plans.

6. A product is supplied in lots of size $N\!=\!10,\!000$. The AQL has been specified at 0.10%. Find the normal, tightened, and reduced double sampling plan from MIL-STD-105E, assuming general inspection level II. Also find the probability of acceptance in the first lot of each plan.