Name :	Student ID # :
--------	----------------

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ ๑ วันอาทิตย์ที่ ๒ สิงหาคม พ.ศ. ๒๕๕๑ วิชา ๒๑๕-๓๒๔ / ๒๑๖-๓๒๔ : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา ๒๕๕๒ เวลา ๙.๐๐-๑๒.๐๐ น.

ห้องสอบ R300

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

คำสั่ง

- ๑. ข้อสอบมีทั้งหมด ๕ ข้อ ให้ทำลงในข้อสอบทุกข้อ
- ๒. อนุญาตให้ใช้เครื่องคิดเลขได้
- ๓. ให้ใช้เครื่องมือเขียนแบบได้
- ๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
9	ത്ര	
ெ	jao	
តា	ത്ര	
હ	jao	
Pa	ഉള	
รวม	9 00	

1)

(a) Is this a structure or a mechanism? Why? (6 points)

(b) Determine the mobility of this mechanism. (6 points)

(c) What is the name of this mechanism? _____ (3 points)

(d) How many inversions does this mechanism have ? (3 points)

(e) The hip joint of human body is an example of a spherical joint. How many degrees of freedom does it have ? (2 points)

Name :	Student ID # :
--------	----------------

2) The 4-link mechanism is shown in the figure below, with R_{AO2} = 20 mm, R_{AB} = 50 mm, and the cylinder 4 has a radius of 20 mm.

(a) What type of the contact between the cylinder 4 and 1 must be in order for this mechanism to have 1 degree of freedom? (2 points)

(b) Draw the mechanism when link 4 is at its both limit positions and determine the stroke of link 4. (14 points)

(c) If link 2 is rotating with a constant speed, assuming the forward motion of link 4 is to the right, which direction must ω_2 be so that it is a quick-return? (2 points)

(d) Determine the time ratio between advance stroke and return stroke. (2 points)

Name :	Student ID # :
--------	----------------

3) For the mechanism shown, link 3 has AB = BC = AC = 50 mm. At this position AB is 120° ccw from x-axis. Point A at this instan has a velocity of 30 mm/s to the left. Draw the velocity polygon of the mechanism and determine the velocity of point C and the angular velocity of link 3. (Use scale 1 mm: 1 mm/s.)

0 Y

scale 1 mm : 1 mm/s

Name:	Student ID # :

4) For the mechanism shown, link 2 is having constant angular velocity of 1 rad/s counterclockwise. Draw the velocity polygon of this mechanism. Determine the velocity of point B and the angular velocities of link 3 and link 4.

N.L			
Name	:		

Student ID # : _____

- 5) A mechanism with 6 links is as shown in the figure.
 - (a) Determine the number of poles (instantaneous centers of velocity) of this mechanism (5 points)
- (b) Find the locations of the following poles in the figure; P_{12} , P_{23} , P_{34} , P_{14} , P_{56} , P_{16} , P_{35} , P_{13} , and P_{35} . (9 points)
- (c) If the angular velocity of link 2 is 2 rad/s ccw, use the location of the pole P_{13} , to show that the angular velocity of link 3 is 1 rad/s ccw. And as the angular velocity of link 5 is also 1 rad/s ccw (the same as link 3) find the angular velocity of link 6 by using the location of the pole P_{15} . (6 points)

