

Prince of Songkla University Faculty of Engineering

Midterm Test

Semester 1/2009

1 August 2009

9:00-12:00

215-613 Mathematical Methods in Engineering

Room R201

Direction:

- 1. All types of calculators, document and books are permitted.
- 2. There are totally 5 problems. Solve all of them.

Total 80 points

Problem #	Full Score	Your mark
1	10	
2	20	
3	20	
4	10	
5	20	
Total	80	

Perapong Tekasakul Instructor

215-613 Mathematical Methods in Engineering

Midterm Test Semester 1/2009 **Total 80 points**

1. Describe if the following differential equations are *ordinary* or *partial*, *linear* or *non-linear*, *homogeneous* or *nonhomogeneous*, and give the *order* of the differential equations as well. (10 points)

(a)
$$2x^2 \frac{dy}{dx} + 2y^2 = x$$

(b)
$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

(c)
$$\frac{d^3u}{dy^3} - y \left(\frac{d^2u}{dy^2}\right) = u$$

(d)
$$x^2 \frac{d^4 y}{dx^4} - 3 \frac{d^2 y}{dx^2} - y^2 = 1$$

(e)
$$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/2} - 5 = 0$$

Name			

2. Solve (20 points)

$$y'' + 2y' + y - e^{-x} = 0$$

$$y(0)=0$$

$$y'(0)=1$$

Name

3. Find a general solution of (20 points)

$$4xy'' + 2y' + y = 0$$

Hint: You may consider using Frobenius method.

Name					

4. Find a general solution of (10 points)

$$x^{2}y'' + xy' + \left(k^{2}x^{2} - \frac{1}{9}\right)y = 0$$

Hint: Use the variable transformation kx = u.

Name			
Ivailie		 	

5. The motion of the mass-spring-damper system is described by

$$y'' + 16y = 4\delta(t - \pi)$$

The initial conditions for the system are

$$y(0) = 2$$
 and $y'(0) = 0$

Determine the response y(t). (20 points)