คณะวิศวกรรมศาสตร์

มหาวิทยาลัยสงขลานครินทร์

สอบกลางภาค ประจำภาคการศึกษาที่ 1

ประจำปีการศึกษา 2552

วันที่ 1 สิงหาคม 2552

เวลา 9:00 - 11:00 น.

วิชา 217 – 482 Machine Learning for Mechatronics Applications

ห้อง A400

คำสั่ง

- 1. ข้อสอบมีทั้งหมด 3 ข้อ ให้ทำทุกข้อ
- 2. <u>ไม่อนุญาต</u>ให้นำ โน้ต ตำรา หรือเอกสารใดๆ เข้าห้องสอบ
- 3. <u>อนุญาต</u>ให้นำพจนานุกรมคำศัพท์ภาษาอังกฤษและเครื่องคิดเลขเข้าห้องสอบได้

ชื่อ	นามสกุล	รหัส
2011111111111	100011	9

ข้อ	คะแนนเต็ม	คะแนนที่ได้
1	10	
2	20	
3	20	
รวม	50	·

 ชลิตา หิรัญสุข ผู้ออกข้อสอบ

217-482: Machine Learning for Mechatronics Applications

Tutor: Chalita Hiransoog

Note: Only dictionaries (both paper copies and electronic dictionaries) and calculators are allowed into this examination. Answers are expected in English and show all working when possible.

Question 1: Introduction to Object Recognition and Machine Learning

1.1 What is the main objective of Object Recognition task? (5 marks)

1.2 What is the main objective of Machine Learning? (5 marks)

217-482: Machine Learning for Mechatronics Applications Mid Term

Question 2: Decision Tree Learning

Given

Entropy(S) Ξ

 $\sum_{(i=1)}^{c} -p_i \log_2 p_i$

Gain(S, A) Ξ

Entropy(S) - $\sum_{(v \in Value(A))} (S_v / S)(Entropy(S_v))$

2.1 Construct only the first level of the decision tree to estimate an individual's credit risk from the data from credit history of loan application below. (15 marks) 2.2 Find Gain(Debt = high, Income) (5 marks)

Data from Credit History of Loan Application

NO.	RISK	CREDIT HISTORY	DEBT	INCOME
1	high	bad	high	low
2	high	unknown	high	moderate
3	moderate	unknown	low	moderate
4	low	unknown	low	high
5	high	bad	low	low
6	moderate	bad	low	high
7	low	good	low	high
8	high	good	high	low
9	moderate	good	high	moderate
10	low	good	high	high
11	high	bad	high	moderate

Question 3: Bayesian Learning

Naïve Bayes Classifier: $v_{NB} \equiv argmax_{(v_j \in V)} P(v_j) \prod_i P(a_i \mid v_j)$

With the same data from Question 2, use Naïve Bayes Classifier to calculate the credit risk of the individual with the following properties:

1st individual - Credit History = unknown, Debt = high, Income = low

2nd individual - Credit History = bad, Debt = high, Income = high

(20 marks)