

Prince of Songkla University Faculty of Engineering

Midterm Examination: Semester I

Date: 25 July 2009

Subject: 235–402 Geotecniques

Academic Year : 2009 Time : 9.00-12.00 A.M.

Room: A 400

Instructions

1. Do all questions of 7 pages and answer them in the given papers and do rear papers allowed.

- 2. Not allowed all books or notes and must reset a calculator programming capability.
- 3. Write your name in each answer page including graphs and returned <u>all papers</u> to controllers.
- 4. Total points are 115 or 30% of course.

"ทุจริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้น และพักการเรียน 1 ภาคการศึกษา สูงสุด ให้ออก"

No. Problem	Full Points	Assigned Points
1	20	
2	30	
3	30	
4	20	
5	15	
Total Points	115	

Name	. Surname	ID

Name	Surname	ID	
Calculat	tion the following questions		
1. A mul	tistage triaxial test with a sawed j	ointed oriented 45° with the axis of t internal friction angle. (15 points)	he core yielded
[Confining Pressure (MPa)	Maximum axial stress (MPa)	
	0.10	0.54	
	0.30	1.63	
	0.50	2.72	
	1.00	5.45	
300 n of dia avera separa	nm bedding plane dip of 50° again amond drilled core give typical unger ROD values of 65%. The slight	gh slightly weathered siltstone with a st the direction of the drive. Index test niaxial compressive strength values of the trium and slightly weathered beddenditions are anticipated to be wet. Edulus of deformability in RMR?	ting and logging of 120 MPa and ing plane with a

.....

3.	Three specimens of rock were subjected to axial point load tests. The pressure gauge readings at rupture were 1.8, 5.0, and 12.5 MPa. If the ram area of point load test was 1335.48 mm ² , and the diameter and length of all core specimens tested was 54 mm, calculate I _{s50} and estimate for the unconfined compressive strength of each rock. (30 points)
•••	
•••	
•••	
•••	
.,	
••	

Name ID

Name	Surname]	D
------	-----------	---

- 4. From the grain size distribution of soil is shown in Table below
 - (a) Plot the graph for percent finer versus grain size. (10 points)
 - (b) Determine C_u and C_c of the soil (10 points)

Sieve No.	Mass retained (g)	
4	28	
10	42	
20	48	
40	128	
60	221	
100	86	
200	40	
Pan	24	

5. Seismic investigation was carried out in a dam site can be recorded by seismic P-wave and S-wave are 16.2 km/sec and 8.1 km/sec, respectively. Then Schmidt hammer testing shows a reading of 48. Assuming the bulk density of the ground is 2560 MN/m³. Calculate dynamic modulus of elasticity, Poisson' ratio and strength derived from Schmidt hardness? (15 points)

Equations and Tables for Midterm Examination

$$\begin{split} \upsilon_{d} &= \frac{\left(V_{p}^{2} - 2V_{s}^{2}\right)}{2\left(V_{p}^{2} - V_{s}^{2}\right)}; \quad CI = \frac{W_{L} - w}{I_{p}} \\ \rho_{b} &= \frac{G_{s} + eSr}{1 + e}; \quad \rho_{d} = \frac{G_{s}\rho_{w}}{1 + wG_{s}}\left(1 - A_{r}\right); \\ I_{p} &= W_{L} - W_{p} \\ T &= \frac{\tau_{v} \cdot \pi \cdot d^{2}}{2}\left(h + \frac{d}{3}\right) \\ E_{M} &= 2\text{RMR} - 100 \quad ; \quad K = \frac{E\upsilon}{(1 + \upsilon)(1 - 2\upsilon)} \\ n &= \frac{V_{v}}{V_{t}} \times 100; \; \lambda_{d} = \rho \cdot \left(V_{p}^{2} - 2V_{s}^{2}\right); \; I_{L} = \frac{w - W_{p}}{I_{p}} \\ \lambda &= \frac{E\upsilon}{(1 + \upsilon)(1 - 2\upsilon)} \; ; \quad w = \frac{W_{w}}{W_{s}} \times 100 \\ E_{M} &= \rho \cdot V_{p}^{2} \cdot (1 + \upsilon)(1 - 2\upsilon) \\ I_{D} &= \frac{e_{\max} - e}{e_{\min}} \quad G &= \frac{E}{2(1 + \upsilon)} \; ; \quad \sigma_{c} = 10^{A_{0}} \; ; \quad I_{s50} = F \times I_{s} \\ Y &= \rho V_{p}^{2} \; ; \quad E &= \frac{9KG}{3K + G} \; ; \quad F &= \left(\frac{D_{e}}{50}\right)^{0.45} \\ \sigma_{t} &= \frac{2P}{\pi \cdot t \cdot d} \; ; \quad E_{d} &= \rho \cdot V_{s}^{2} \cdot \frac{\left(3V_{p}^{2} - 4V_{s}^{2}\right)}{\left(V_{p}^{2} - V_{s}^{2}\right)} \\ A_{0} &= 1 + 0.0065\rho \cdot SHV \; ; \; I_{s50} &= \left(\frac{D_{e}}{50}\right)^{0.45} \cdot I_{s} \\ E_{M} &= 10^{(RMR - 10)/40} \; ; \quad G_{d} &= \rho \cdot V_{s}^{2} \; ; \quad I_{s50} &= \frac{P}{D_{e}^{2}} \\ K_{d} &= \rho \cdot \frac{\left(3V_{p}^{2} - 4V_{s}^{2}\right)}{3} \; ; \quad I_{d} &= \frac{\left(C - D\right)}{\left(A - D\right)} \times 100 \; ; \; D_{e}^{2} &= 4A/\pi \; ; A = WD \\ P &= \frac{100 - RMR}{100} \; \gamma B \qquad C_{u} = d_{60} \cdot d_{10} \; ; \quad C_{z} = d_{30} \cdot d_{60} \cdot d_{10} \\ \tau &= c \; + \; \sigma_{n} \cdot \tan \phi \\ S &= \frac{V_{w}}{V} \times 100 \qquad e = \frac{V_{v}}{V} \end{aligned}$$

Geotecniques' 09

		ION PARAMETERS AND	TREIR NATINGS		Denne of setting					
	F	'arameter			Range of values		T=		-	
	Strengt of	h Point-load strength index	>10 MPa	4-10 MPa	2 - 4 MPa	1-2MPa	For this low range - uniaxi compressive test preferred			
1	intact ro materia	I beingint access	>250 MPa	100 - 250 MPa	50 - 100 MPa	25 - 50 MPa	5 - 25 MPa	1-5 MPa	< 1 MP	
		Rating	15	12	7	4	2	1	0	
-	n.i	core Quality RQD	90% - 100%	75% - 90%	50% - 75%	25% - 50%		< 25%		
		Rating	20	17	13	8	1	3		
	- Comme	ing of discontinuities	>2m	0.6-2.m	200 - 600 mm	60 - 200 mm		< 60 mm		
3	Span		20	15	10	- 8		5		
_		Rating	Very rough surfaces	Slightly rough surfaces	Slightly rough surfaces	Slickensided surfaces	Soft gouge >5 mm t		thick	
4	Cond	tion of discontinuities (See E)	Not continuous No separation	Separation < 1 mm Slightly weathered walls	Separation < 1 mm Highly weathered walls	or Gouge < 5 mm thick or Separation 1-5 mm		or Separation > 5 mm Continuous		
	l	(acc L)	Unweathered wall rock			Continuous				
		Rating	30	25	20	10		0		
_		Indiow per 10 m tunnel length (Vm)	None	< 10	10 - 25	25 - 125		> 125		
j	Groundwa ter		0	<0.1	0.1, - 0.2	0.2 - 0.5		> 0.5		
		General conditions	Completely dry	Dame	Wet	Dripping	Flowing			
		Rating	15	10	7	4		0		
R	ATING ADJ	USTMENT FOR DISCON	TIMUITY ORIENTATIONS (Sec	≥F}						
<u></u>	e and dip or	entations.	Very favourable	Favourable	Fair	Unfavourable	Ver	y Unitervou	e dale	
		Tunnels & mines	0	-2	-5	-10		-12		
	Ratings	Foundations	0	-2	-7	-15	-25			
	. 424.753	Slopes	0	-5	-25	-50	1			
: D	OCK MASS		D FROM TOTAL RATINGS							
alin			100 ← 61	80 ← 51	50 ← 41	40 ← 21		< 21		
	s muriber		1000	1		N	_	٧		
			Very good rock	Good rock	Fair rock	Poor regit	 v	Ery poor I	rock	
	chiption		Yesy good rook	Oute low) on team					
	EANING CI 5 mumber	FROCK CLASSES		T II		N	\top	V		
_	rage stand-u	- Ema	20 yrs for 15 m span	1 year for 10 m span	1 week for 5 m span	10 hrs for 2.5 m span	30 r	nin for 1 r	n spar	
		****	>400	300 - 400	200 - 300	100 - 200	+-	< 100	·	
		cmass (MPa)	>45	35 - 45	25 - 35	15-25	_	<15	-	
		rock mass (deg)			23-30	10 20				
			OF DISCONTINUITY condition		3 - 10 m	10 - 20 m		> 20 m		
	-	igth (persistence)	<1m 5	1 - 3 m 4	3-10 ml	10-2018		0	•	
Rati See	aration (ape	rhae)	None	< 0.1 mm	0.1 - 1.0 mm	1-5 mm	> 5 mm		П	
Bari	79		- 6	5	4	1				
	ghness		Very rough	Rough	Slightly rough	Smooth			Stickensided 0	
Rating			6 None	5 Hardifling < 5 mm	Hard filling > 5 mm	Soft filling < 5 mm	O Soft Sline:		5 mm	
	ing (gouge) ina		5	4	2	2		Ő		
Rating Westhering			Unweathered	Slightly weathered	Moderately weathered	Highly weathered			Decomposed	
	TAS .		6	5	3	11		0	_,-	
F. E	FFECT OF		AND DIP ORIENTATION IN 1	TUNNELLING"						
		Strike per	pendicular to tunnel axis			Strike parallel to turnel axis				
Drive with dip - Dip 45 - 90°		with thip - Dip 45 - 90°	Drive with stip	a - Disp 20 - 45°	Dip 45 - 90°		Dip 20 - 45°			
	Very favourable				Very favourable		Fair			
		Very favourable	Favo	xurable	Very favourable		rar			

^{*} Some conditions are mutually exclusive . For example, if infilling is present, the roughness of the surface will be overshadowed by the influence of the gouge. In such cases use A.4 directly.

**Modified after Wickham et al (1972).