มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบปลายภาค ประจำภาคการศึกษา 1 วันที่ 3 ตุลาคม 2552 วิชา 220-593 Applied Engineering Mathematics ปีการศึกษา 2552 เวลา 13.30 — 16.30. ห้องสอบ หัวหุ่นยนต์

ชื่อ-สกุล	 • • • •	 • • •	 	 	• •	 	 	 	 	•		 	 	•	 •
รหัส	 • • • •	 	 . . .												

คำชื้นจง

- 1.ข้อสอบทั้งหมดมี 5 ข้อ คะแนนรวม 80 คะแนน ดังแสดงในตารางข้างล่าง
- 2.ข้อสอบมีทั้งหมด 3 แผ่น (รวมปก) ผู้สอบต้องตรวจสอบว่ามีครบทุกหน้าหรือไม่ (ก่อน ลงมือทำ)
- 3.ให้ทำหมดทุกข้อลงในสมุดคำตอบ
- 4.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 5.ห้ามหยิบ หรือยืมสิ่งของใดๆ ของผู้อื่นในห้องสอบ
- 6.อนุญาตให้นำตำราเข้าห้องสอบได้

7. GOOD LUCK

ตารางคะแนน

ข้อที่	คะแนนเต็ม	ได้
1	10	
2	10	
3	10	
4	25	
5	25	
รวม	80	

Problem 1 (10 Points)

Determine the Fourier series of the function

$$f(x) = \begin{cases} 0 & ,3 \le x < 6 \\ x - 6 & ,6 \le x < 9 \end{cases}$$

Problem 2 (10 Points)

Determine the Fourier series of the function

$$f(x) = x^4$$
 on $[-\pi, \pi]$

Problem 3 (10 Points)

A mass of 1 kg suspends on a spring with k = 64 N/m. If the mass is freely released from the position where there is no force in the spring and the initial velocity is zero. Please answer the following questions:

- 1) Formulate an initial value problem which will determine the position of the mass at any time t.
- 2) Find the time required by the mass to return to the released position.

Problem 4 (25 Points)

For a flexible beam which is simply supported and is laid on an elastic media having a uniform spring stiffness k (Force/Length/Length) as seen in the figure, if the beam properties are EI, L, and uniform mass m (mass/Length),

- 1) Formulate the general from of the beam's deflection equation (u(x,t)).
- 2) Find the particular solution of the beam's deflection if there is given initial as $u(x,0) = 5\sin(2\pi x/L)$ and $\dot{u}(x,0) = 0$.

Problem 5 (25 Points)

Answer the following optimization problems:

1) Find the stationary points of the function f and also show that there exists the global minimum.

$$f(x) = \frac{1}{9} \left[\left(x^2 - 2x + 1 \right) \left(x^2 - 6x + 9 \right) \right]$$

2) If the objective function in (1) is changed to g(x), state the condition of stationary points and minimum point.

$$g(x) = \left[f(x) \right]^{1/2}$$

3) Find the optimum for

$$f(x) = -x_1^3 + 3x_1 - 6x_2^2 + 84x_2$$

Subjected to the constraints:

$$x_1 + x_2 = 6$$