มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบปลายภาค ประจำภาคการศึกษา 1	ปีการศึกษา 2552
วันที่ 9/10/ 2552	เวลา 9.00 — 12.00 น
วิชา 221-381: Computer Applications in Civil Engineering	
ห้องสอบ R300	
นี้ค-สกถรหัสรหัส	• • • • • • • • • • • • •

คำชื้แจง

- 1.ข้อสอบทั้งหมดมี 6 ข้อ คะแนนรวม 165 คะแนน ดังแสดงในตารางข้างล่าง
- 2.ข้อสอบมีทั้งหมด 4 หน้า (ไม่รวมปก)
- 3.ให้ทำหมคทุกข้อลงในสมุคคำตอบ
- 4.ห้ามนำเอกสารใดๆ เข้าห้องสอบ **ทุจริตจะได้ E**
- 5.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 6.กระดาษทดที่แจกให้ไม่ต้องส่งคืน ถ้าไม่พอขอเพิ่มที่อาจารย์คุมสอบ
- 7.ห้ามหยิบ หรือยืมสิ่งของใคๆ ของผู้อื่นในห้องสอบ
- 8. อนุญาตให้นำ Dictionary เข้าห้องสอบได้
- 9. **GOOD LUCK**

ตารางคะแนน

ข้อที่	คะแนนเต็ม	ได้
1	30	
2	30	
3	30	
4	30	
5	30	
6	15	
รวม	165	

Asst. Prof. Dr. Suchart Limkatanyu

Problem 1 (30 Points)

The experimental data relating a dependent variable y and two independent variables x_1 and x_2 are given as follows:

i	1	2	3	4
x_{1i}	10	10	20	50
x_{2i}	5	45	25	25
\mathcal{Y}_i	50	40	36	32

Fit a function $y = a + bx_1^2 + cx_2^2$ to these data set with regression (Least Square) and estimate the value of y for $x_1 = 10$ and $x_2 = 45$.

Hint: You start from the definition of Least Square

Problem 2 (30 Points)

The following table gives the viscosity ν of sulfuric acid, in millipascal-seconds, as a function of concentration C, in mass percent. From these data, use the linear spline interpolation to estimate the viscosity when the concentration is 5%, 63%, and 85%.

С	0	20	40	60	80	100
ν	0.89	1.40	2.61	5.37	17.4	24.2

Problem 3 (30 Points)

For the data given below

xi	3	4.5	7	9
f(xi)	2.5	1	2.5	0.5

- (a) How many constants do we need to determine if quadratic splines is used to fit these data?.
- (b) How many constants do we need to determine if cubic splines is used to fit these data?.
- (c) Set up the system of equations needed to determine all constants if quadratic splines is used.

Problem 4 (30 Points)

A cross section of a racing sailboat is shown in figure a. Wind forces f_w exerted per foot of mast from the sails vary as a function of distance above the deck of the boat (z) as shown in figure b.

As a structural engineer, you are asked to determine the tensile force T in the cable. However, you must first evaluate the total wind force F_{w} exerted on the mast by wind:

$$F_{w} = \int_{0}^{30} 200 \left(\frac{z}{5+z} \right) e^{\frac{-2z}{30}} dz$$

Use the following numerical integration techniques to determine $F_{\rm w}$:

- (a) Composite Trapezoidal Rule of Integration with h = 5 ft.
- (b) Composite Simpson's 1/3 Rule of Integration with h = 5 ft.

Trapezoidal Rule:

$$I = (x_{i+1} - x_i) \left\lceil \frac{f(x_{i+1}) + f(x_i)}{2} \right\rceil$$

Simpson's 1/3 Rule:

$$I = (x_{i+2} - x_i) \left[\frac{f(x_i) + 4f(x_{i+1}) + f(x_{i+2})}{6} \right]$$

Problem 5 (30 Points)

Determine the values of the constants $\alpha_0, \dots \alpha_3$, so that the integration rule

$$\int_{0}^{1} f(x) dx = \sum_{i=0}^{3} \alpha_{i} f(i/3)$$

is exact for all polynomials of degree ≤ 3 .

Problem 6 (15 Points)

- (a) What is major difference between the Regression and Interpolation?
- (b) What is the main advantage of the Spline interpolation scheme?
- (c) What is the main feature of the Lagrange Polynomial?