Faculty of Engineering

Prince of Songkla University

Final Examin	ation Paper:	Semester I
---------------------	--------------	------------

Academic year: 2009

Date: September 28th, 2009

Time: 13.30-16.30

Room: R200

Subject: 230-301 Basic Chemical Engineering I (Chemical Engineering Kinetics and

Reactor Design I)

กำสั่ง

💠 ให้ตอบคำถามลงในข้อสอบ

🛠 ห้ามนำข้อสอบบางส่วนหรือทั้งหมดออกจากห้องสอบ

💠 ห้ามหยิบยืมเอกสารใดๆ และพูดคุยกับนักศึกษาอื่นขณะทำข้อสอบ

อนุญาต

💠 ให้นำเครื่องกิดเลข หนังสือ และเอกสารเข้าห้องสอบได้

💠 ให้นักศึกษาเขียนชื่อและรหัสลงในข้อสอบที่จัดให้ครบทุกแผ่น

สำหรับนักสึกษา

ชื่อรหัสนักสึกษา

ข้อ	1	2	3	รวม
คะแนนเต็ม	20	20	20	60
ทำได้				

ทุจริตในการสอบ โทษขั้นต่ำคือปรับตกในวิชานั้น

และพักการเรียน 1 ภาคการศึกษา

ข้อสอบมีทั้งหมด 3 ข้อ 4 หน้า (รวมปก) โปรดดูกวามเรียบร้อยก่อนลงมือทำ ดร. สุรัสวดี กังสนันท์ ผู้ออกข้อสอบ ชื่อนักศึกษา.....รหัสนักศึกษา.....

1. For Gas-phase reaction,

А ➔ В

Pure A is placed in a batch reactor at 65.6 atm and 127°C.

Calculate the time to reduce the concentration of A by a factor of 5 ($C_A = C_{A0}/5$) in a

batch reactor for the reaction with $-r_A = kC_A^2$, when $k = 0.046 \text{ dm}^3/\text{mol.min}$

Solution

Initial concentration of A

$$C_{A0} =$$

Mole balance equation for batch reactor

In - Out +Gen = Acc

Rate law

Combining and Substituting

ชื่อนักศึกษา.....รหัสนักศึกษา.....

2. Liquid phase reaction, $2A \rightarrow B$

is carried out isothermally in a CSTR (flow reactor). Pure A enters at a volumetric flow rate of 15 dm³/s and at a concentration of 0.5 mol/dm³. The reaction rate law is second-order respected in A and k = 10 dm³/(mol.s) 2.1 What CSTR volume is necessary to achieve a 50% conversion? 2.2 What is the space time value (τ) for this reaction?

2.1 Solution Mole balance equation for CSTR ln - Out + Gen = Acc

Rate law

Stoichiometry, flow system, liquid phase

Combining and Substituting

2.2 Solution

 $\tau =$

ชื่อนักศึกษารหัสนักศึกษา	

3. Set up a stoichiometric tables using A as a basis of calculation in the following gasphase reaction.

$$A + 2B \rightarrow 2C$$

The reaction is carried out in isothermal, isobaric, variable-volume gas-phase system, and $y_{A0} = 0.4$. Please use the stoichiometric tables to express the concentration as a function of conversion, Ci = f(X), and combine Ci = f(X) with the rate law to obtain $-r_A =$ f(X). The Rate law for this reaction is $-r_A = kC_A C_B^2$.

Solution

Symbol	Initial	Change	Remaining
A			
В			
С			
	F _{το}		F _T =