PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Exam: Semester I Academic Year: 2009

Date : September 29, 2009 Time : 13:30-16:30

Subject : Advanced Mathematics for Chemical Engineering (230-600)

Total pages: 13 (inc. front page) Room: S104

NAME STUDENT ID

ไม่อนุญาตให้นำเอกสารและเครื่องคำนวณทุกชนิดเข้าห้องสอบ <u>ทุจริตในการสอบโทษขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต</u> และพักการศึกษา 1 ภาคการศึกษา

Question #	Total Score	Score
1	20	
2	15	
3	20	
4	25	
5	20	
6	20	
Total	120	

คร. พรศิริ แก้วประคิษฐ์ ผู้ออกข้อสอบ 1. (20 points) The motion of a mass on a spring moving in a medium, in which damping is negligible, can be described as following:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + y = 4\delta(t - 2\pi)$$

At $t = 2\pi$, the mass is given a sharp blow. (solve by using Laplace Transform – invert using **partial fraction**).

1.1. (10 points), If the mass is at rest in the equilibrium position, y(0) = 0 and $\frac{dy}{dt}\Big|_{t=0} = 0$, find the function of y(t) at $0 \le t < 2\pi$ and $t \ge 2\pi$

STUDENT ID		 	
	 	 	 , .

1.2. (10 points), If the mass is released from rest 1 unit below the equilibrium position, y(0) = 1 and $\frac{dy}{dt}\Big|_{t=0} = 0$, find the function of $\underline{y(t)}$ at $0 \le t < 2\pi$ and $t \ge 2\pi$

art	in		rır	`									
5 I U	ענ	EN'	1 11	Ι.	 	 ٠.	 	 	٠	٠.	٠		

2. (15 points) The rate equation for component B involved in the following first – order reactions, $A \stackrel{k_1}{\to} B \stackrel{k_2}{\to} C$, can be written as,

$$\frac{dc_{B}}{dt} + k_{2}c_{B} = k_{1}c_{A0}e^{-k_{1}t}$$

Determine the concentration of B as a function of time, if the condition $c_B = 0$ at t = 0 (by Laplace transform – invert using **convolution**).

3. (20 points) A feed solution containing z_0 mass fraction of a particular

volatile component is fed to a single effect evaporator at a rate of F kg/hr. It may assume that vapor rate (V) and liquid rate (L) are constant and the liquid holdup in the evaporator is H kg. The dynamic mass balance can be written as,

$$H\frac{dx(t)}{dt} = Fz_0(t) - Vy(t) - Lx(t)$$

and y(t) = mx(t) where, y = the equilibrium mass fraction in vapor, x = the mass fraction of the volatile component in liquid. It is noted that: $\alpha = \frac{mV + L}{H}, \beta = \frac{F}{H}$

3.1. (10 points), find dynamic equation in deviation form, $\frac{d\hat{x}}{dt}$, where $\hat{x} = x - \bar{x}$ and $\bar{x} =$ liquid volatile mass fraction at steady-state condition

SI	ľ	JD	E	T	ID																			
----	---	----	---	---	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

3.2. (10 points), find response x(t), when inlet mass fraction takes impulse disturbance, $c_0\delta(t)$, (solve by using Laplace Transform)

4. (25 points) Heat diffusion equation, T(x,t) in a semi-infinite slab can be described in new variable $\theta(x,t)$ as,

where, $\theta(x,t) = T(x,t) - T_0$ and $T(x,0) = T_0$, $T(0,t) = T_s$, $T(\infty,t) = T_0$

4.1. (2 points), find the initial conditions in term of $\theta(x, t)$

4.2. (3 points), find the boundary conditions in term of $\theta(x, t)$

4. (25 points) Heat diffusion equation, T(x,t) in a semi-infinite slab can be described in new variable $\theta(x,t)$ as,

$$\alpha \frac{\partial^2 \theta}{\partial x^2} = \frac{\partial \theta}{\partial t}$$

where, $\theta(x,t) = T(x,t) - T_0$ and $T(x,0) = T_0$, $T(0,t) = T_s$, $T(\infty,t) = T_0$

4.1. (2 points), find the initial conditions in term of $\theta(x, t)$

4.2. (3 points), find the boundary conditions in term of $\theta(x, t)$

STUDENT ID	
OI ODDIN ID	••••

4.3. (20 points), determine the particular solution T(x,t) by using Laplace Transform

5. (20 points) The one – dimension linear wave equation for u(x, t) can be written as,

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$

where, $x \in [0,1]$, subject to the initial conditions,

$$u(x,t=0)=\sin{(\pi x)}$$

and

$$\left. \frac{\partial \mathbf{u}}{\partial \mathbf{t}} \right|_{\mathbf{t} = \mathbf{0}} = 0$$

and the boundary conditions,

$$u(x = 0,t) = 0$$
 , $u(x = 1,t) = 0$

Find the solution of the problem by using a separation of variables

6. (20 points) Find solution of the following PDE by using combination variables method,

$$\frac{1}{k}u_t = u_{xx}$$

If the combination variable is dimensionless, $\eta = \frac{x^2}{kt}$

STUDENT ID

Table of Laplace Transforms

F(s)	f(t)
$\frac{1}{s}$	u(t) = 1
1	δ(t)
$\frac{1}{s^2}$	t
$\frac{1}{s+a}$	e ^{–at}
$\frac{1}{(s+a)^2}$	te ^{—at}
$\frac{1}{s^2 + a^2}$	$\frac{1}{a} \sin(at)$
$\frac{s}{s^2 + a^2}$	cos(at)
$\frac{1}{s^2 - a^2}$	$\frac{1}{a}$ sinh(at)
$\frac{s}{s^2 - a^2}$	cosh(at)
$\frac{1}{s}e^{-\alpha\sqrt{s}}, \qquad (\alpha \ge 0)$	$\operatorname{erfc}\left(\frac{\alpha}{2\sqrt{t}}\right)$
$e^{-as}F(s)$	f(t-a)u(t-a)
F(s-a)	$e^{-at}f(t)$

Fourier cosine series:

$$\begin{split} f(x) &= \sum_{n=0}^\infty a_n cos\left(\frac{n\pi}{L}x\right) = a_0 + \sum_{n=1}^\infty a_n cos\left(\frac{n\pi}{L}x\right) \\ a_0 &= \frac{1}{L} \int_0^L f(x) dx \qquad \text{and} \qquad a_n = \frac{2}{L} \int_0^L f(x) cos\left(\frac{n\pi}{L}x\right) dx \quad , \quad n = 1,2 \dots \end{split}$$

Fourier sine series:

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{L}x\right)$$

$$b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) dx , \quad n = 1,2 ...$$