4		a contract of the contract of	
ንፈ ነ	ล_สกล	รหสรหส	
ມ	C) = 61 1 61		

มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

ข้อสอบปลายภาค: ภาคการศึกษาที่ 1

ปีการศึกษา: 2552

วันที่สอบ: 28 กันยายน 2552

เวลา: 9.00-12.00

วิชา: 230-610 เทอร์โมไดนามิกส์วิศวกรรมเคมีขั้นสูง

ห้องสอบ: A400

ทุจริตในการสอบ โทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาค การศึกษา

- ห้ามหยิบยืมเอกสารจากผู้อื่น

- เขียนชื่อ และรหัสทุกหน้า

- กรณีกระดาษคำตอบไม่พอให้ใช้ด้านหลังได้

- ใช้ดินสอทำข้อสอบได้

- ข้อสอบมีทั้งหมด 5 ข้อ (10 หน้า) ข้อละ 25 คะแนน

ข้อ	คะแนนเต็ม	คะแนนที่ได้
1	25	
2	25	
3	25	
4	25	
5	25	
	125	

ผศ.ดร. ลือพงศ์ แก้วศรีจันทร์ ผู้ออกข้อสอบ ชื่อ-สกุล.....รหัส.....รหัส.....

1. (25 points) Prove that the activity coefficient for species 1 in a ternary mixture represented by $RT \ln \gamma_1 = A_{12} x_2^2 + A_{13} x_3^2 + (A_{12} + A_{13} - A_{23}) x_2 x_3$ can be derived from the molar Gibbs energy of the mixture as follows:

$$\underline{G}^{E} = A_{12}x_{1}x_{2} + A_{13}x_{1}x_{3} + A_{23}x_{2}x_{3}$$

ط	a.
ชิค-สกล	รหัส

2. (25 points) Experimental data of vapor-liquid equilibria in A and B mixtures over a range of temperatures. Their data for the vapor and liquid compositions and equilibrium total pressures at 55°C are given in the following table:

x_B	\mathcal{Y}_{B}	<i>P</i> (bar)			
0.0819	0.1869	0.26892			
0.2192	0.4065	0.31573			
0.3584	0.5509	0.35463			
0.3831	0.5748	0.36088			
0.5256	0.6786	0.39105			
0.8478	0.8741	0.43277			
0.9872	0.9863	0.43641			

The vapor pressure of pure A at 55° C is 0.435 bar, and that of B is 0.237 bar. Calculate the activity coefficients of A and B and \underline{G}^{ex} at the each experimental point, and plot curve between x_B and \underline{G}^{ex} .

ชื่อ-สกุล.....รหัส.....รหัส.....

3. (25 points) Pure nitrogen tetroxide at a low temperature is diluted with nitrogen and heated to 25° C and 1 bar. If the initial mole fraction of N_2O_4 in the N_2O_4 - nitrogen mixture before dissociation begins is 0.3 what is the extent of the composition and the mole fractions of NO_2 and N_2O_4 present at equilibrium of this initial condition.

ชื่อ-สกุล.....รหัส......รหัส......

4. (25 points) Using the following data, estimate the total pressure and composition of the vapor in equilibrium with a solution of 20 mol% ethanol (1) and 80 mol% water (2) at 78.15^o C. Using Wilson model for liquid phase activity coefficient. Wilson activity coefficient model:

$$\ln \gamma_1 = -\ln(x_1 + Ax_2) + x_2 \left[\frac{A}{x_1 + Ax_2} - \frac{B}{Bx_1 + x_2} \right]$$

$$\ln \gamma_2 = -\ln(x_2 + Bx_1) - x_1 \left[\frac{A}{x_1 + Ax_2} - \frac{B}{Bx_1 + x_2} \right]$$

Data:

Vapor pressure of ethanol (1) = 1.006 bar

Vapor pressure of water (2) = 0.439 bar

$$\lim_{x_1 \longrightarrow 0} \gamma_1 = \gamma_1^{\infty} = 1.6931$$

$$\lim_{x_2 \to 0} \gamma_2 = \gamma_2^{\infty} = 1.9523$$

الد	A 4
ชื่อ สกอ	รหัส
DO-MIN	, , , , , , , , , , , , , , , , , , ,

5. (25 points) The data below give the solubility of silver chloride in aqueous solutions of $Ba(NO_3)_2$ at $25^{\circ}C$.

Concentration	Concentration of		
of Ba(NO ₃) ₂ ,	AgCl at saturation ,		
(mol/m ³)	(mol/m ³)		
0.00000	1.273x10 ⁻²		-
0.2111	1.309x10 ⁻²		
0.7064	1.339x10 ⁻²		
4.402	1.450x10 ⁻²	:	
5.6	1.467x10 ⁻²		

Show that the silver chloride solubility data above satisfies Eq. 13.2-7, at least at low barium nitrate concentrations. Find the numerical value of K_S^0 and α . Hint: Create a graph for calculating of K_S^0 and α .

0	0.5	1	1.5	2	2.5	3	3.5	4	4.
L					1				
	<u> </u>								
		• • • • • • • • • • • • • • • • • • • •			 				