PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester 1 Date: 2: คุลาคม 2552 Subject Number: 241-530 Subject Title: Parallel and Distributed Computing

Academic Year: 2009 Time: 09.00-12.00 (3 hours) Room: หัวหุ่นยนศ์

Subject The: Parallel and Distributed Company

Exam Duration: 3 hours

,

This paper has 11 pages, 8 questions and 140 marks (30%).

Authorised Materials:

- Writing instruments (e.g. pens, pencils).
- Textbooks, a notebook, handouts, and dictionaries are permitted.

Instructions to Students:

- Scan all the questions before answering so that you can manage your time better.
- Answers **must** be written in **Thai**.
- Write your name and ID on every page.
- Any unreadable parts will be considered wrong.

When drawing diagrams or coding, use good layout, and short comments; marks will not be deducted for minor syntax errors.

Cheating in this examination

Lowest punishment: Failed in this subject and courses dropped for next semester.

NO	Time (Min)	Marks	Collected	NO	Time (Min)	Marks	Collected
1	20	16		3	10	6	
2	40	37		6	20	12	
3	20	16		7	10	7	
4	50	40		8	10	6	

Highest punishment: Expelled.

Question 1	(16 marks; 20 minutes)
1) Compare Static and Dynamic Load B	alancing? (6 marks)
Static Load Balancing	Dynamic Load Balancing
2) Explain how Agglomeration can im	prove performance and also some pictures
to help with the explanation. (4 ma	urks)

_

3) From the following picture of the execution of parallel processes, discuss how the *lengths* of the three states affect the *system performance*. (6 marks)

Question 2

Tell if the following statement true or false.

- 1) In MPI programming, the goal is often to create as many agglomerated tasks per processor as possible.
- 2) When granularity is increased, parallelism is increased and communication is also increased.
- 3) _____ The tasks use the same information should be grouped together to reduce communication.
- 4) Execution time decreases as number of processors decreases.
- 5) <u>Manually developing parallel codes is a time consuming, complex, error-</u> prone and iterative process.
- 6) _____ Loops are the most frequent target for automatic parallelization.
- 7) _____ If you are beginning with an existing serial code and have time and budget constraints, then automatic parallelization may be the answer.
- 8) _____ Pipelining and parallelism can be used to increase throughput.
- 9) _____ Cost-effectiveness means the shortest execution time.
- 10) _____ A good factor for measuring the cost-effectiveness is utilization.
- 11) The utilization corresponds to the Gigaflops/cost of the purchasing price.
- 12) _____ System throughput is a number of jobs processed in a unit of time.
- 13) _____ Efficiency is the measure of the entire time for which a processor is employed.
- 14) _____ Amdahl's law ignores parallel overhead and often underestimates achievable speedup.
- 15) _____ Amdahl Effect states that for any fixed number of processors, speedup is usually an increasing function of the problem size.
- 16) When a number of processors increases, the efficiency will increase.
- 17) _____ The parallel overhead depends on both the number of processors used and the problem size.
- 18) _____ The speedup/efficiency will decrease if the problem size increases keeping the number of processors fixed.
- 19) _____ The migration has to maximize the response time.
- 20) _____ In a scalable system, we can keep the speedup/efficiency fixed by increasing both the size of problem and number of processors.
- 21) A scalable system maintains efficiency as processors are added
- 22) _____ For a given problem size, as the number of processors increases, the efficiency also increases.
- 23) _____ A big Isoefficiency function indicates that the parallel system is highly scalable.

Name

ID

- 24) _____ Load balance increases the application performance and system utilization.
- 25) _____ If an application causes a lot of memory paging, then the size of the free available memory is a good indicator of processor load.
- 26) _____ In Heuristic Static Load Balancing, the faster processors will then be assigned with more tasks.
- 27) _____ In Heuristic Static Load Balancing, we find a module pair with most intermodule communication and assign them to different processors
- 28) In Load Balancing, when the traffic is heavy, information exchange should be stopped.
- 29) _____ In Load Balancing, it is common to consider moving an old process that is in execution for a long period of time rather than a new process.
- 30) _____ In Load Balancing Transfer Policy, we should migrate processes that communicate frequently with the intended destination processor to reduce communications load.
- 31) _____ In Load Balancing Transfer Policy, migrating the most locally demanding process will decrease the local load.
- 32) Under heavy load conditions, the sender initiated load transfer performs better, where as the receiver initiated load transfer performs better under lower load conditions.
- 33) Randomization polling works best on a heterogeneous system.
- 34) _____ Task transfer should not disrupt the communication locality.
- 35) _____ Reducing the number of tasks transferred is more important than reducing the size of the task transfer.
- 36) WSDL is an XML format document that addresses the service description.
- 37) OGSI is a core set of interfaces augmented from web service standard to include service creation, fault management, and other functions in order to enable service virtualization.

Question 3	(16 marks; 20 minutes)
From the following load balancing tec of load.	chniques, tell which is suitable for which kind
1) Bin Packing	(4 marks)
2) Randomization	(4 marks)

4) Manager-Worker (4 marks)	3) Pressure Model	(4 marks)
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
4) Manager-Worker (4 marks)		
	4) Manager-Worker	(4 marks)
Name	<u></u>	
Name		

Question 4

(40 marks; 50 minutes)

Propose *a parallel* algorithm for generating prime numbers up to n. It works by first generating the primes up to sqrt(n) and then using those to sieve the values up to n. **Explain and demonstrate** how to partition data with your proposed algorithm by giving an example of a data set. Also **define a policy** to select the number of processes.

The sequential algorithm for finding prime numbers is as follows.

1. Create an array of booleans and set them all to true at first. (true = prime)

2. Set array element 1 to false. Now 2 is prime.

3. Set the values whose index in the array is a multiple of the last prime found to false.

4. The next index where the array holds the value true is the next prime.

5. Repeat steps 3 and 4 until the last prime found is greater than the square root of the largest number in the array.

ID_ Name_

(6 marks; 10 minutes)

Explain the limitation of the Amdahl's law and the effects of each parameter in the Amdahl's law

10

esti	on 6 (12 marks; 20 minut
ron 1)	n Amdahl's Law, find out the speed up if the scenario as follows. Find the speedup when there are 4 processors and 30% parallelizable co
2)	Find the speedup when there are 4 processors and 90% parallelizable co
2)	Find the speedup when there are 4 processors and 90% parallelizable co Find the speedup when there are 32 processors and 30% parallelizable co
2) 3) 4)	Find the speedup when there are 4 processors and 90% parallelizable co Find the speedup when there are 32 processors and 30% parallelizable co Find the speedup when there are 32 processors and 90% parallelizable co
2) 3) 4) 5)	Find the speedup when there are 4 processors and 90% parallelizable co Find the speedup when there are 32 processors and 30% parallelizable co Find the speedup when there are 32 processors and 90% parallelizable co Find the speedup when there are 128 processors and 30% parallelizable

Question 7	(7 marks; 10 minutes)
Explain Virtualization in Grid Computing in details.	
Compare MPI and OpenMp in terms of architecture,	methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	(o marks, to minutes) methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	(o marks, to minutes) methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	(o marks, to minutes) methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	(o marks, to minutes) methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	(o marks, to minutes) methods, usage and tradeoffs
Compare MPI and OpenMp in terms of architecture,	<pre>(0 marks, 10 minutes) methods, usage and tradeoffs</pre>

11