คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบไล่ ประจำภาคการศึกษาที่ 1

ประจำปีการศึกษา 2552

วันที่ 2 ตุลาคม 2552

เวลา 09.00-12.00 น.

วิชา 215-231 Thermodynamics II

ห้อง R 201

216-332 Engineering Thermodynamics II

<u>คำสั่ง</u>

- 1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำทุกข้อ
- 2. อนุญาตให้นำเอกสารเขียนด้วยลายมือตนเองเข้าห้องสอบได้ (กระคาษขนาด A4 จำนวน 1 แผ่น)
- 3. อนุญาตให้นำเครื่องคิดเลขเข้าห้องสอบได้
- 4. อนุญาตให้นำตารางเทอร์โมฯ เข้าห้องสอบได้

รศ.คร.ชูเกียรติ คุปตานนท์ ผู้ออกข้อสอบ

ชื่อ-สกุล	รหัสรหัส
4	

ข้อ	คะแนน
1	
2	
3	
4	
5	
รวม	

ชื่อ-สกุล	รหัสรหัส
1.	
a) Using the Clapeyron equation, estimate the	ne enthalpy of vaporization of refrigerant-12 at
30°C, and compare it with the tabulated value.	

b) Steam is throttled from 4.5 MPa and 400°C to 3.5 MPa. Estimate the temperature change of the steam during this process and the average Joule-Thomson coefficient.

		·	
4		υ ·	
ชค)-สกล	รหส	
-			

- 2. A 0.9-m³ rigid tank is divided into two equal compartments by a partition. One compartment contains Ne at 20°C and 100 kPa, and the other compartment contains Ar at 50°C and 200 kPa. Now the partition is removed, and two gases are allowed to mix. Heat is lost to the surrounding air at 20°C during this process in the amount of 15 kJ. Determine;
 - (a) the final mixture temperature and
 - (b) the final mixture pressure.

		•	
4		ψ	
ชก-	สกล	รหส	
טע	B11 1 b1	d	.

- 3. A wet cooling tower is to cool 110 kg/s of cooling water from 40 to 25°C at a location where the atmospheric pressure is 96 kPa. Atmospheric air enters the tower at 20°C and 70 percent relative humidity and leaves saturated at 35°C. Neglecting the power input to the fan, determine
 - (a) the volume flow rate of air into the cooling tower and
 - (b) the mass flow rate of the required makeup water.

	•	
ત્વે .		<u>ي</u>
ชื่อ-สก	a	5 W A
บบาเก	61	d Fl bl

- 4. A gaseous fuel with a volumetric analysis of 60 percent CH_4 , 30 percent H_2 , and 10 percent N_2 is burned to completion with 130 percent theoretical air. Determine ;
 - (a) the air-fuel ratio and
 - (b) the fraction of water vapor which would condense if the product gases were cooled to 20° C at 1 atm.

	•	•
4		april 1 and
ชค-	สกล	รหส
ш	D1 1 7 01	

5. Ethane gas at 20°C is burned in a steady-flow combustion chamber at a rate of 5 kg/h with stoichiometric amount of air which is preheated to 500 K before entering the combustion chamber. An analysis of the combustion gases reveals that all the hydrogen in the fuel burns to H₂O but only 95 percent of the carbon burns to CO₂, the remaining 5 percent forming CO. If the products leave the combustion chamber at 800 K.

Determine the rate of heat transfer from the combustion chamber.