Name:	Student ID

Prince of Songkla University

Faculty of Engineering

Exam: Midterm Exam, Semester II

Academic Year: 2008

Date: December 22, 2009

Time: 9.00-12.00

Subject: 230-302 Basic Chemical Engineering II

Room: A 401

ทุจริตในการสอบ โทษขั้นต่ำคือปรับตกในวิชานั้น และพักการเรียน 1 ภาคการศึกษา

Instructions:		Points Distribution		
-	There are a total 7 questions.	(For Grader Only)		
-	The points for each problem are not distributed evenly.	Question	Points	Score
	Place your name and the student ID number on every		Value	
	page.	1	20	
-	Students are allowed to use	2	15	
-	1) A pen or pencil	3	20	
_	2) Calculator	4	20	
- 3) Note A4 5 sheets - 4) Heat transfer (J.P. Holman)	3) Note A4.5 sheets	5	25	
	,	6	20	:
	Heat transfer (J.P. Holman)	7	15	
		Total	135	1

GOOD LUCK!

Supawan Tirawanichakul

December 16, 2009

PLEASE CHECK TO MAKE SURE THAT

YOU HAVE ALL 8 PAGES OF THE EXAM BEFORE BEGINNING

(including the cover sheet)

\sim
٠,

Name:	Student ID	
Name:	Student ID	

(20 points) Find the heat transfer per unit area through the composite wall sketched.
 Assume the one dimensional heat flow.

Thermal conductivity of A, B, C and D is 155, 30, 50 and 70 W/m K, respectively.

Name:	Student ID	3
	Student ID	

2. (15 points) A vertical square plate, 30 cm on a site is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8 .Calculate the total heat lost by both sides of the plate.

Name:	_ Student ID	4
-------	--------------	---

3. (20 points) A bottom of a copper pan, 150 mm. in a diameter, is maintained at 115°C by the heating of element of an electric range. Calculate

- (a) the power require to boil the water in this pan.
- (b) the critical heat flux
- (c) the evaporation rate.

Name:	Student ID 5	,

4. (20 points) A straight rectangular fin has a length of 1.50 cm and a thickness of 2 mm. The thermal conductivity is 55 W/m K, and it is expose to environment temperature at 25° C and the convection heat transfer coefficient is 500 W/m² K. Calculate

- (a) The maximum possible heat lost for a base temperature of 300°C.
- (b) The actual heat loss.

5. (25 points) Water flows on the inside of a steel pipe (k = 43 W/m K) with an ID of 2.5 cm. The wall thickness is 2 mm, and the convection coefficient on the inside is 500 W/m² K. The convection coefficient on the outside is 12 W/m² K. Calculate

6

- (a) The overall heat transfer coefficient
- (b) If this pipe is covered with a layer of asbestos (k = 0.18 W/m K). Calculate the critical insulation radius and the heat transfer increased or decreased if adding an insulation thickness to 10 mm.

6. (20 points) A square array of six hundred and twenty-five 3.5 mm diameter tubes is used condense steam at atmospheric pressure. The tube walls are maintained at 88°C by coolant flowing inside the tubes. Calculate mass of steam condensed per hour per unit length of the tubes.