PRINCE OF SONGKLA UNIVERSITY **FACULTY OF ENGINEERING**

Final Exam : Semester II

Academic Year : 2009

Date

: December 24, 2009

Time

: 9:00-12:00

Subject

: Unit Operations I (230-323)

Total pages

: 10 (inc. front page)

Room

: S203

Name Student ID

อนุญาตให้นำเอกสารและเครื่องคำนวณทุกชนิดเข้าห้องสอบ ทุจริตในการสอบโทษขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการศึกษา 1 ภาคการศึกษา

Question #	Total Score	Score
1	10	
2	35	
3	20	
4	30	
5	20	
6	25	
Total	140	

คร. พรศิริ แก้วประคิษฐ์ ผู้ออกข้อสอบ

Na	me Student ID
1. (10 points)	, These sentences are ✓ "True" or ➤ "False"
1.1.	Flux is a transfer rate per unit volume.
1.2.	Driving force of mass transfer is concentration gradient.
1.3.	In film theory, it is assumed that eddy diffusivity is zero within
	the effective film thickness.
1.4.	A rate of transfer is reduced if boiling point elevation (BPE) of
	the solution increases.
1.5.	BPE of the solution depends only on the concentration of solute.
1.6.	Temperature drop in the evaporator is the difference between the
	superheated temperature of the steam and the temperature in
	vapor space.
1.7.	For dilute solution, heat of dilution and BPE can be negligible.
1.8.	To concentrating β - carotene, residence time in a evaporator
	should be minimized.
1.9.	In two – phase theory, if $\frac{k_x}{mk_y} << 1$ it means that the mass –
	transport resistance of the gas phase has large effect.
1.10	. Turbulent diffusion provides higher transfer rate due to addition
	of eddy diffusivity term.

Name	Student I	D
TIGHTIE		

- 2. (35 points) A 20% NaOH solutions is to be concentrated to 65% in a single effect evaporator with a vertical tube 6 m in diameter and 15 m long. The feed rate is 60,000 kg/h at 40.56°C. The boiling point of water at the absolute pressure in vapor space is 110°C. Steam is available at a gauge pressure of 261.8 lb_f/in².
- 2.1. (20 points), calculate the steam requirement in kg/hr
- **2.2.** (5 points), calculate the economy
- 2.3. (10 points), estimate the overall heat transfer coefficient in W/m². °C

Name	Student ID
------	------------

- 3. (20 points) Carbon tetrachloride (CCl₄) evaporates into a tube 1.02 in diameter containing oxygen. The distance between the CCl₄ liquid level and the top of the tube is 17.1 cm. The total pressure on the system is 755 mmHg, and the temperature is 0°C. The vapor pressure of CCl₄ at that temperature is 33 mmHg and its density is 1.629 g/cm³.
- **3.1.** (10 points), calculate the molar flux of CCl_{14} , if it is found that 0.0208 cm³ of CCl_{14} evaporate in a 10 hours period.
- **3.2.** (10 points), estimate the diffusivity of the gas pair O_2 CCl_4 in cm²/s

Name Studen	ent ID	
-------------	--------	--

- **4.** (30 points) A spherical drop of water 0.05 cm in diameter is falling at a velocity 215 cm/s through dry, still air at 105°F and 1 atm. The vapor pressure of water at 105°F is 0.0247 atm.
- **4.1.** (15 points), estimate the mass transfer coefficient, k_c
- **4.2.** (5 points), estimate the mass transfer coefficient relating partial pressure, k_G in mol/cm².s.atm
- **4.3.** (10 points), calculate the evaporation rate

Name Stud	nt II	D			
-----------	-------	---	--	--	--

- 5. (20 points) A tube 0.2 cm in diameter is filled with liquid n-heptane at 21°C. The diffusivity of n-heptane in air at that temperature is 0.071 cm²/s and the vapor pressure is 0.05 atm.
- **5.1.** (10 points), estimate the mass transfer coefficient relating mole fraction in gas phase, k_y if the liquid level is decreased 1 cm from the top
- **5.2.** (10 points), calculate the rate of decrease of the liquid level in cm/h (molecular weight and density of n-heptanes is 100.2 g/mol, 0.66 g/cm³)

Name Stu	tudent ID
----------	-----------

- **6.** (25 points) A dilute solution of organic colloids in water is to be concentrated from 8 to 45 % solids in a forced circulation evaporator. The steam is available at 249°F, and a pressure in a vapor space is maintained at 102 mmHg. The feed rate to the evaporator is 20,000 kg/h, and the specific heat of the feed solution is 3.77 J/g.°C.
- **6.1.** (5 points), determine the capacity of the evaporator
- **6.2.** (20 points), calculate the feed temperature and the heating load, if the economy is required at 1.