PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination : Semester II

Academic Year: 2009

Date: 21 December 2009

Time: 09.00 - 12.00

Subject: 230 - 463 Polymer Technology

Room: S201

Student Name:	ID no.	:
---------------	--------	---

Number of questions: 4

Time: 3 hours

Total marks: 100

Books and notes are not allowed

Calculators are allowed

Writing in pencil is allowed

Question	Full Marks	Marks Received
1	20	
2	20	
3	30	
4	30	
Total	100	

All notations used on this examination paper have their usual meanings.

ทุจริตในการสอบโทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

Student Name: II	D no.	:
------------------	-------	---

Question 1

- (a) Give two properties of a polymer which will be suitable for use as flexible oil pipe or hose in cold climate at -20 °C.
- (b) Compare number-average degree of polymerization in step and chain polymerizations.
- (c) Write polymerization reaction for the cationic polymerization of isobutylene using BF₃ initiator and water co-catalyst. Comment on the reaction conditions and molecular weight of the polymer formed.

Isobutylene monomer structure is
$$\rm H_2C{=}C$$
 . $\rm I$ $\rm CH_3$

- (d) Explain chain transfer in free radical polymerization and its effect on the polymer molecular weight. How is the chain transfer constant determined?
- (e) What is Zeigler-Natta catalyst? How is it used in the production of polypropylene?

(20 marks)

Student Name: ID no.:....

Question 2

 a) For linear step polymers, the number distribution and the weight distribution of x-mers are given by:

$$N_{*}^{*} = p^{x-1} (1-p)$$

$$w_x = x (1-p)^2 p^{x-1}$$

where N_x^* = number fraction of x-mer

 w_x = weight fraction of x-mer

Plot N_x^* and w_x against x for x values 0, 50, 100, 150 and 200 at p =0.98.

Explain the relationships between N_x and w_x with x at this extent of reaction.

(8 marks)

- b) Would the gel occur in the two cases of stepwise polymerizations below?
 - b.1) The initial mixture contains 3.5 moles of a dicarboxylic acid, 2.0 moles of glycerol (a triol) and 1.0 moles of methanol.
 - b.2) The initial mixture contains 2.2 moles of a dicarboxylic acid, 1.4 moles of glycerol (a triol) and 0.5 moles of ethylene glycol (a diol).

(12 marks)

Note:

When reactants are present in equivalent reactant mixture:

$$\frac{1}{x_n} = \frac{1}{1-p}$$

$$p = \frac{2}{f_{av}} - \frac{2}{\overline{X}_n f_{av}}$$

Student Name:	 ID no.	:
Answer to Q2		

Q2a)
Graph for plot of distribution curves

			1			
1 i						
1						
1						
1 1				1		
1 1						
1 1				1		
1		1	1	1		
1		ì		1		
1 1		l		l		
-	 					
1 1	i I	l		1		
1		l		1		
1 1		i		1		
I I		1		l		
1		1	l .	1		
1 1	1	i	ł	1		
	 					
1 1		I	ı		1	1
1	1	I	I	i		
1 1	1	I	I	I	1	
1 1	1	I	ı	ı	1	
1 1	1	I	I	I	1	
1 1	1					
1 1			1			
1		1		1	1	
1 1				1		
1		1		l		
1		1		l	ı	
		1		l	ı	
$\overline{}$	 					
1 1				l	ı	
1 1		1		l	ı	
1 1		ı		l	1	ł .
1		1	l	l	1	
1		1	ſ	l	1	1
1					ł	
1			f .	l.	1	
1 1				I.	1	
1	1	1	ı	l .	I	1
1	l	1	I	I .	I	
	1	1	ı	ı	I	1
1	1	1	ı	I	ı	
	1	1	ı	ı	I	1
1 1	1	1	I	ı	I	1
1 1	1	I	ı	ı	I	1
1 3	1	l .	1	ı	ŀ	1
1 1	1	1	!	1	I	l
1 1	 L	1	1	1	l	l
	ı	1	1	1	1	ı
1	ŀ	1	I	1	I	l
	1	1	I	1	1	ı
1	ı	1	I	1	I	l
1	ı	1	I	1	1	ı
		I	L	1		l
$\overline{}$		1		T		
1 1	ı	1	ŀ	1	1	ı
1 1	ı	1	ŀ	1	1	ı
1 1	ı	1	t	1	I	ı
1 1	i	1	1	1	1	ı
1 1	1	1	ı	I	1	ı

Student Name: ID no.:.....

Question 3

One hundred litres of methyl methacrylate is polymerized at 40°C with 300 g of dibenzoyl peroxide initiator. No solvent is used in the reaction. The density of liquid methyl methacrylate monomer is 0.87 g/cm³ and its molecular weight is 100 g/mole. The molecular weight of dibenzoyl peroxide is 242 g/mole.

Termination occurs only by disproportionation. The rate constants are:

$$k_{d} = 3.0 \times 10^{-6}$$
 s^{-1}
 $k_{p} = 513$ L mol. s^{-1}
 $k_{t} = 47 \times 10^{6}$ L mol. s^{-1}

initiator efficiency, f = 0.5

- (a) Calculate the steady-state concentration of free radicals.
- (b) Calculate the per cent conversion of polymer formed in the first 3 hours of reaction.
- (c) Calculate kinetic chain length, v , of the polymer formed in (b)
- (d) Calculate \overline{M}_n of the polymer formed in (b)

Note that:

initiator half life =
$$\frac{ln2}{k_d}$$

$$- \frac{d [M]}{dt} = \frac{k_p}{k_t^{1/2}} (fk_d [I])^{1/2} [M]$$

-
$$\ln \frac{[M]}{[M]_0} = \frac{k_p}{k_t^{1/2}} (f.k_d [I])^{1/2}. t$$

$$v = \frac{k_p [M]}{2 (fk_d k_t [I])^{1/2}}$$

All notations have their usual meanings.

(30 marks)

Student Name: ID no.:.....

Question 4

- (a) Describe how the reactivity ratios are determined in a free radical copolymerization.
- (b) The copolymer equation in terms of concentrations is given by:

$$\frac{d [M_1]}{d [M_2]} = \frac{[M_1] (r_1 [M_1] + [M_2])}{[M_2] ([M_1] + r_2[M_2])}$$

It can also be written in mole fractions as shown below.

$$F_1 = \frac{r_1 f_1^2 + f_1 f_2}{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2}$$

All notations have their usual meanings.

In a free radical copolymerization of styrene (M_1) and methyl methacrylate (M_2) at 60° C using AIBN as free radical initiator, $r_1 = 0.585$ and $r_2 = 0.478$, calculate F_1 at different values of f_1 .

- (b.1) Show f₁ and the corresponding F₁ in table form.
- (b.2) Plot F₁ versus f₁.
- (b.3) Comment on the structure of the copolymer formed.
- (b.4) Comment on feed composition for this monomer pair.
- (b.5) Derive the equation for azeotropic copolymer composition.

(30 marks)

Student Name: ID no. :

Answer to Q4

