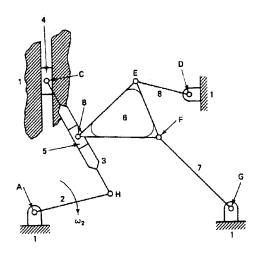
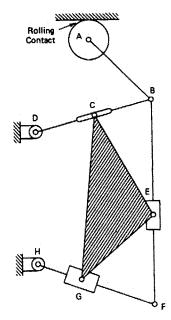
Name :	Student ID # :
คณะ	วิศวกรรมศาสตร์
มหาวิทย	าลัยสงขลานครินทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ ๒ วันเสาร์ที่ ๒๖ ธันวาคม พ.ศ. ๒๕๕๒ วิชา ๒๑๕-๓๒๔ / ๒๑๖-๓๒๔ : กลศาสตร์เครื่องจักรกล ประจำปีการศึกษา ๒๕๕๒ เวลา ๙.๐๐-๑๒.๐๐ น. ห้องสอบ R201 และ S104

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

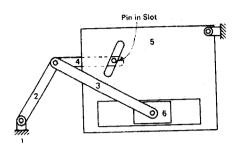

คำสั่ง

- ๑. ข้อสอบมีทั้งหมด ๕ ข้อ ให้ทำลงในข้อสอบทุกข้อ
- ๒. อนุญาตให้ใช้เครื่องคิดเลขได้
- ๓. ให้ใช้เครื่องมือเขียนแบบได้
- ๔. ไม่อนุญาตเอกสารอื่น ๆ

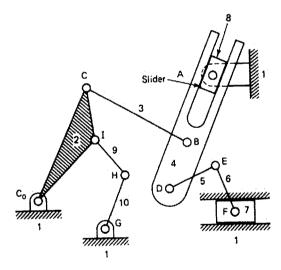

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
6	ja0	
ල) මර	
តា)බර	
ھ	J eO	
œ.	<u>ම</u> ්ට	
รวม	9 00	

- 1) Answer the following questions
 - (a) What is the mobility of this mechanism?

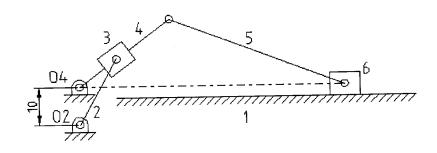


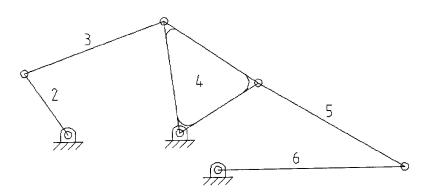
- (b) How many ternary links (links with 3 joints) does the mechanism in (a) have ?
- (c) How many inversions does this mechanism have, including the one shown?



(d) Is the rolling contact joint of the mechanism above J_1 or J_2 (joint with 1 dof or 2 dof) ?

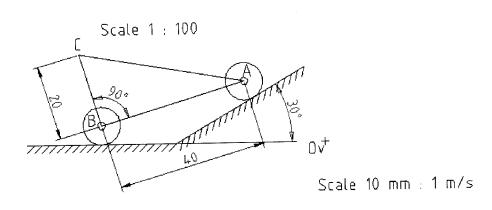
(e) Determine the mobility of this mechanism.


- (f) Is the pin-in-slot joint a lower pair?
- (g) Determine the mobility of this mechanism.


(h) Are there quaternary links (link with 4 joints) in the mechanism in (g)? If yes, which links?

Name :	Student ID # :
value .	

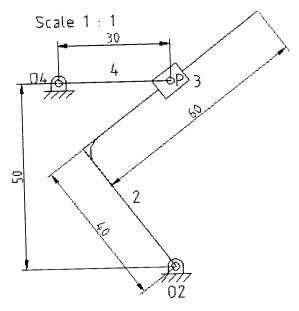
- 2) The mechanism shown is called Whitworth quick-return mechanism. Link 2 is 20 mm long, link 4 is 30 mm long, and link 5 is 50 mm long. The fixed pin joints O_2 and O_4 are 10 mm apart. Link 2 is the input crank and link 6 is the output slider.
 - (a) Draw the mechanism when link 6 is at its both limit positions.
 - (b) If link 2 is rotating with a constant speed, assuming the forward motion of link 6 is to the right, which direction must ω_2 be so that it is a quick-return?
 - (c) What is the stroke of this mechanism?
 - (d) Determine the time ratio between advance stroke and return stroke.



- 3) For the mechanism shown,
 - (a) How many poles does it have ?
 - (b) Locate P24, P26 and P46.
- (c) If link 2 has an angular velocity of 20 rad/s clockwise, estimate the angular velocity of link 6 using the location of the instantaneous centers.

Name :	Student ID # :
--------	----------------

4) The mechanism shown represents a car climbing a slope of 30°. If the rear wheel B is traveling with a speed of 5 m/s to the right, and an acceleration of 3 m/s² to the right, determine the angular velocity and angular acceleration of the car body. Also determine the velocity and acceleration of point C.



0a⁺

Scale 20 mm : 1 m/s2

5) For the mechanism shown, link 4 has a constant angular velocity of 1 rad/s counterclockwise.

Determine the angular velocity and angular acceleration of link 2.

⁺0v

Scale 1 mm : 1 mm/s

Oa Scale 1 mm : 1 mm/s2