Name:	Student ID No:

Faculty of Engineering Prince of Songkla University

การสอบกลางภาคการศึกษาที่ 2 วันจันทร์ที่ 21 ธันวาคม 2552 วิชา 237-302 Metal Forming ปีการศึกษา 2552

เวลา 13:30 - 16:30 น

ห้องหัวหุ่น

ผู้ออกข้อสอบ ผศ.ดร. เจษฎา วรรณสินธุ์

คำสั่ง

- (1) เขียนคำตอบให้สมบูรณ์ทุกข้อเพื่อให้ได้คะแนนเต็ม
- (2) ไม่อนุญาตให้นำเอกสารทุกชนิดเข้าสอบ เว้นแต่ กระดาษ A4 1 แผ่น เครื่องคิดเลข และ Dictionary เข้าสอบได้
- (3) ให้ตรวจสอบข้อสอบให้เรียบร้อยก่อนสอบ หากมีข้อสงสัย ให้ถามอาจารย์คุมสอบได้
- (4) ข้อที่มีการคำนวณ ใช้ข้อมูลที่ให้ไว้ในหน้านี้

ทุจริตในการสอบโทษขั้นต่ำคือปรับตกในรายวิชาที่ทุจริตและพักการศึกษา 1 ภาคการศึกษา

Question No.	Point	Result
1	15	
2	15	
3	20	
4	10	
5	20	
6	20	
	Total	

- Heat transfer coefficient (steel/liquid aluminium) = 2,000 W/m²/°C
- Heat transfer coefficient (brass/liquid aluminium) = 10,000 W/m²/°C
- Density of pure aluminum = 2,700 kg/m³
- Heat capacity of liquid aluminum = 1 kJ/kg/°C
- Heat of fusion of aluminium = 398 kJ/kg
- Heat capacity of sand = 0.6 kJ/kg/°C
- Viscosity of pure aluminum = 0.0013 Pa-s

Name:	Student ID No:
. , , , , , , , , , , , , , , , , , , ,	

1. Melting Furnaces (15 points)

a) For melting zinc alloys, which furnace is the most suitable: crucible furnace, cupola furnace, or arc furnace? Explain your reason clearly.

b) Explain the key advantages of hot chamber die casting when compared with cold chamber die casting.

2. Defects (15 points).

a) What is microsegregation defect? Also explain how to solve it.

b) What is hot tearing defect? Also explain how to solve it.

3. Fundamentals (20 points).

a) Draw the final microstructure of an Al-1%Cu alloy solidified in a sand mold. Explain all the phases. (5 points)

b) For an Al-20%Cu alloy solidified very slowly, draw the final microstructure (5 points)

c) For an Al-20%Cu alloy solidified very slowly, approximately how much alpha phase is in the microstructure.

d) For an Al-20%Cu alloy solidified very slowly, approximately how much copper (wt%) is at the middle of the alpha phase? (5 points)

4. Cast Metals (10 points)

a) Draw a cooling curve of <u>a pure aluminum metal</u> solidifying slowly in a graphite crucible. Include as much detail as possible such as the melting point. (Note: There is a 10°C undercooling) (5 points).

b) Draw a cooling curve of <u>Al-20%Cu alloy</u> solidifying slowly in a graphite crucible. Include as much detail as possible such as the liquidus, solidus, or eutectic temperatures. (<u>Note: There is a 10°C undercooling</u>) (5 points).

5. Fluidity (20 points).

This mold is made of steel and it is at 200°C. The metal is pure aluminum. Answer the following questions:

i) If we pour the metal with the temperature of 700° C and the metal flows for the length of 0.5 m before stopping. How much the metal head must be (H = ?) (5 points)?

ii) At the "Entrance," is the flow of the liquid metal <u>laminar</u> or <u>turbulent</u>? Explain your answer clearly (5 points).

6. Others (20 points).

(a) Which case (A or B) of the sample will give better tensile properties? Explain clearly why. (10 points)

Conditions: aluminum alloy is poured at the same temperature of 700°C. The metal mold is at the same temperature of 200°C

b) Explain clearly 3 methods to reduce hot spots in a casting. (10 points)