PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester II

Date: February 25, 2010

Subject: 210-463 Telecommunication Engineering

Academic Year: 2009

Time: 13.30-16.30

Room: Robot

Instructions:

- a. Allow a student to open his/her own note (one A4-size paper only) during the exam
 - b. Allow the student to use a calculator and dictionary

Attempt all problems

1. Fiber-optic communications

Below is the list of parameters for the fiber-optic communication link operating at 1330 nm wavelength to support the data rate of 140 Mbps. The desired BER is 1*10⁻⁹.

- The light source is a laser diode with a -0.3 dBm output.
- The optical fiber amplifier gain is 40 dB.
- The receiver threshold of a PIN type is -46 dBm.
 - a) Find the power budget

(5 points)

Allocate the power budget in a) as follows:

- Connectors are used at the output of the source and at the input to the detector. The connector loss is at 0.5 dB each.
- Fusion splices every kilometer; allows 0.25 dB per splice
- Fiber attenuation loss at 0.25 dB/km
- A margin of 4 dB
- b) What will be the maximum distance achievable without the use of repeaters?

(5 points)

2. Satellite communications

Below is the link budget analysis for the uplink (6.175 GHz, C-band). Calculate this satellite link budget and answer Problems 2.1)-2.6).

2.1)	Transmit power (850W) What is the transmit power in dBW?	dBW	
	Transmit waveguide losses	2.0 dB	
	Transmit antenna gain (7m)	50.6 dBi	

2.2)	Uplink EIRP	dBW	
	What is the uplink EIRP in dBW?		
	Atmospheric attenuation	0.1 dB	
	Free-space loss	200.4 dB	
	Receive antenna gain	26.3 dBi	
	Receive waveguide loss	$0.5 \mathrm{dB}$	
2.3)	System noise temperature (450K)	dB(K)	
,	What is the system noise temperature in	n dB(K)?	
2.4)	Spacecraft G/T What is the Spacecraft G/T in dB/K?	dB/K	
2.5)	Boltmann's constant Bandwidth (25 MHz) What is the bandwidth in dB Hz?	–228.6 dBW/Hz/	K.
2.6)	Carrier-to-noise ratio What is the carrier to noise ratio in dB	dB	
			(10 points)

3. Wireless communications

3.1) Explain the advantages and disadvantages of cell clustering in Figure 1. (5 points)

Figure 1

3.2) If the C/I of 15 dB is required for a satisfactory channel performance of a cellular system, what is the cluster size should be used for the maximum capacity if the path loss coefficient is $\alpha = 3$? Assume that there are 6 co-channel cells in the first tier, and all of them are at the same distance from the mobile. Use suitable approximations.

(10 points)

3.3) Consider AMPS with the C/I requirement = 18 dB. Implement this cellular system in a suburban propagation environment with the path loss coefficient (α) = 4. Calculate the maximum radio capacity of this analog cellular system. Given that the radio capacity is measured as "the number of traffic channels per cell per MHz."

(15 points)