PRINCE OF SONGKLA UNIVERSITY
 FACULTY OF ENGINEERING

Final Examination: Semester 2
Date: February 15, 2010
Subject: 225-351 Industrial Plant Design

Academic Year:2009
Time: 13:30-16:30
Room: Robot, S201

ทุจริตในการสอบ โทษขั้นต่ำ คือ พักการเรียน 1 ภาคการศึกษา และปรับตกในรายวิชาที่ทุจริต

Directions:

- There are 5 questions. The total score is 100 .
- Write your own answer on your examination sheets.
- This examination is closed book exam; however, the students can take these following to the exam room,
- 2 A4 pages with your own note writing and the instructor signature
- A dictionary
- A calculator

Name.
Student ID

Question	Full scores	Assigned Scores
1.	20	
2.	20	
3.	20	
4.	20	
5.	20	
Total	100	

\qquad

1. (20 points) The WWW factory produces 3 types of car spare parts that are part A, B and C. Their average monthly demand are $20,000,18,000$ and 25,000 pieces, respectively. In the factory, there are 6 main processes that are turning, grinding, milling, drilling, shaping and packing. Each main process uses machine to produce the product. Each part requires processes to produce as follow;

$$
\begin{aligned}
& \text { Part A : Turning } \rightarrow \text { Grinding } \rightarrow \text { Milling } \rightarrow \text { Packing } \\
& \text { Part B : Drilling } \rightarrow \text { Grinding } \rightarrow \text { Shaping } \rightarrow \text { Packing } \\
& \text { Part C : Turning } \rightarrow \text { Drilling } \rightarrow \text { Grinding } \rightarrow \text { Milling } \rightarrow \text { Packing }
\end{aligned}
$$

The production rates in minutes per piece of each part at each process are listed as follow;

Process	Production Rate		
	Part A	Part B	Part C
Turning	5	-	4
Grinding	4	5	2
Milling	8	-	2
Drilling	-	6	3
Shaping	-	2	-
Packing	10	15	10

Assuming that the average fraction defectives for these part $2 \%, 5 \%$ and 3%. Calculate the number of machines required to fulfill the demand. The factory operate 10 hours per day and 25 days per month.
\qquad
2. ($\mathbf{2 0}$ points) The from-to material flow for an 6 department facility is given in the table below

FROM		A	B	C	D	E	F
	A	-	100		20		150
	B		-	30	200		20
	C			-	30		8
	D		150		-	50	30
	E					-	250
	F						-

Note : unit flow = kilogram per hour
a.) (12 points) Calculate torque of this from-to and develop the from-to chart to reduce the torque value.
b.) (8 points) Construct a relationship diagram based on the above material flow matrix.
\qquad
3. (20 points) A factory produces wood toys with the sequence process by Figure 1. Time (sec.) for each process is shown by the value above each circle.
a. (5 points) Calculate the cycle time and number of work stations if the production rate is 1,000 pieces per day and working hours are 10 hours per day.
b. (10 points) Balance the production line by using COMSOAL Technique, select longer task.
c. (5 points) Calculate the line efficiency.

Figure 1

Work Station (Step1)	Work list (Step 2)	Work Selected (Step 3)	Cumulative time (Step 4)	Idle time (c=........s)

4. (20 points) Suppose the following layout is provided as the initial layout to CRAFT. The flow-between matrix and the layout are given below. The area of each department is $20 \times 20 \mathrm{~m}^{2}$.

FROM
To

	A	B	C	D	E
A	-	100		20	150
B		-	30	200	20
C			-	30	
D				-	50
E					-

A	C	D
E	B	

a. (10 points) Calculate the total distance of the initial layout.
b. (10 points) Select 2 departments which will be changed its location and the total distance of the new layout will be reduced. Calculate the total distance of the new layout.
5. (20 points) Answer or fill in the following questions,
a. (2 points) List the possible sources of raw water which can be used in the factory.
b. (2 points) What is temporary hardness of water?
\qquad
\qquad
\qquad
\qquad
c. (2 points) About suspended solids, what are total solids? How are total solids measured?
\qquad
\qquad
\qquad
d. (2 points) Explain the following terms:
$\mathrm{BOD}_{5}=$
$\mathrm{BOD}_{\mathrm{L}}=$
e. (4 points) List all types of heat load for the calculation of an air conditioning system in a $7-11$ convenient store.
f. (4 points) List all essential accessories of a steam boiler.
g. (4 points) List the main components of an air condition system and explain briefly about the function of each component.

