Name : \qquad

คณะวิศวกรรมศาสตร์
มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ ๒
วันพุธที่ ๑๗ กุมภาพันธ์ พ.ศ. ๒๔๔๔๓
วิชา ๒๑๔-ตi๒๔/๒ด๖-ตฑ๒๔ กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา ๒๔๔๕ใต
เวลา ๑๓.๓๐-๑๖.๓๐ น.
ห้องสอบ Robot / S201

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

คำสั่ง

๑. ข้อสอบมีทั้งหมด ๔ ข้อ ให้ทำลงในข้อสอบทุกข้อ
๒. อนุญาตให้ใช้เครื่องคิดเลขได้
๓. ให้ใช้เครื่องมือเขียนแบบได้
๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร
ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
の	๒०	
๒	๒०	
๓	๒०	
๔	๒०	
๔	๒०	
รวม	๑๐๐	

\qquad
\qquad

1) (a) The reciprocating radial knife-edge follower of a cam is to rise 2 cm uniformly (constant speed) in 120° of cam rotation, then dwell for 60°, then return uniformly to its starting height in 90°, and finally dwell for the remaining 90°. If the prime circle radius is 3 cm , draw the displacement diagram and sketch the cam profile for clockwise cam rotation.

Name: \qquad Student ID \# : \qquad

1) (b) Use the figure below to answer these questions

\%

41

6

(2)

6

Which cams have flat-faced followers ? \qquad
Which cams have radial followers ? \qquad
Which cams have oscillating followers ? \qquad
Of what type are all these cam ? \qquad
\qquad
2) (a) If $\frac{\omega_{4}-\omega_{1}}{\omega_{2}-\omega_{1}}=-\frac{N_{2}}{N_{4}}$ is the formula for case (a), then

(o)

(b)

(c)

(d)

(g)

(h)

$$
\frac{\omega_{5}-\omega_{1}}{\omega_{2}-\omega_{1}}=-\frac{N_{2}}{N_{3}} \frac{N_{4}}{N_{5}}
$$

is for case \qquad ,

(i)

(j)

(k)

(i)
and

$$
\frac{\omega_{7}-\omega_{1}}{\omega_{2}-\omega_{1}}=+\frac{N_{2}}{N_{3}} \frac{N_{4}}{N_{5}} \frac{N_{6}}{N_{7}}
$$

is for case \qquad -
(b) A bevel planetary gear train is shown below. Gear 1 is fixed, with the input is gear 3 and the output is arm 4. The data for gear numbers of teeth and input velocities are given as: $N_{1}=88, N_{2}=60, N_{3}=$ 120 , and $\omega_{3}=200$ clockwise when viewed from the left. Determine the velocity of the arm, ω_{4}.

\qquad
\qquad
3) For the 6-bar quick-return mechanism shown, force P of 40 N is applied to link 6. Determine the input torque M_{12} to keep the mechanism in static equilibrium.

\qquad
\qquad
4) Link $3(A B)$ of the mechanism shown has its center of mass at G and the following data; $m_{3}=1 \mathrm{~kg}, I_{G}=$ $3200 \mathrm{~kg}-\mathrm{mm}^{2}, \mathrm{R}_{\mathrm{AB}}=65 \mathrm{~mm}, \mathrm{R}_{\mathrm{AG}}=32.5 \mathrm{~mm}$. Point A is moving with a constant velocity, $\mathrm{V}_{\mathrm{A}}=60 \mathrm{~mm} / \mathrm{s}$ to the left. It can be determined that the acceleration a_{G} is $35.2 \mathrm{~mm} / \mathrm{s}^{2}$ downward, with $\alpha_{3}=0.417 \mathrm{rad} / \mathrm{s}^{2}$ clockwise. Assume no friction. Determine (a) the inertia force, (b) the inertia moment, and (c) the force P applied at point A along the slot to cause this motion of link 3.

Name : \qquad
\qquad
5) A rotor has unbalance masses $m_{1}=15 \mathrm{~g}$, at radius $r_{1}=0.020 \mathrm{~m}$, and $\mathrm{m}_{2}=20 \mathrm{~g}$, at radius $\mathrm{r}_{2}=0.020 \mathrm{~m}$, on a shaft supported at the bearings A and B, as shown. This rotor is rotating at 2000 rpm . Two correction masses of 15 g each are to be placed in the planes C and D to balance this rotor. Determine the angular location and the radius for each mass so that the dynamic load on the bearings will be zero.

$$
\begin{aligned}
& \mathrm{m} 1=15 \mathrm{~g} \\
& r 1=20 \mathrm{~mm} \\
& \mathrm{~m} 2=20 \mathrm{~g} \\
& r 2=10 \mathrm{~mm} \\
& \mathrm{mc}=15 \mathrm{~g} \\
& \mathrm{md}=15 \mathrm{~g}
\end{aligned}
$$

