al a		°~
ชิอ-สกุ	3	รห์ส
20		

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 2 วันที่ 24 กุมภาพันธ์ 2553 วิชา 216-332 Engineering Thermodynamics II ประจำปีการศึกษา 2552

เวลา 13.30-16.30 น.

ห้อง R 300

<u>คำสั่ง</u>

- ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำทุกข้อในกระคายคำถาม

รศ.กำพล ประที่ปชัยกูร ผู้ออกข้อสอบ

	ي
പ്പ പ്ര	รห์ส
ชื่อ-สกุล	

1) An ideal regenerator $(T_3 = T_5)$ is added to a simple ideal Brayton cycle. Air enters the compressor of this cycle at $90 \ kPa, 10^{\circ}C$, the pressure ratio is 8, and the maximum cycle temperature is $815^{\circ}C$. What is the thermal efficiency if this cycle? What would the thermal efficiency of the cycle be without the regenerator. Draw T-s diagram of the cycle. Given: for air $C_p = 1.005 \frac{kJ}{kgK}$, k = 1.4 (25 marks)

ชื่อ-สกุลรหัสรหัส		e e
nn-an	4 .	รหส
	หก-สกล	9 (1.6)

2) In a regenerative Rankine cycle, the closed feedwater heater with a pump as shown is arranged so that the water at state 5 is mixed with the water at state 2 to form a feedwater which is saturated liquid at 1.4 MPa. Feedwater enters this heater at $175^{\circ}C$ and 1.4 MPa with a flow rate of $1\frac{kg}{s}$. Bleed steam is taken from the turbine at 1 MPa, $200^{\circ}C$, and enters the pump as a saturated liquid at 1 MPa. Determine the mass flow rate of bleed steam required to operate this unit. (25 marks)

ชื่อ-สกุล	รหัส	
ขอ-ถนุถ		

3) A mixture of nitrogen and carbon dioxide with a carbon dioxide mass fraction of 50% has a constant volume specific heat of $0.792 \frac{kJ}{kg.K}$. This mixture is heated at constant pressure in a closed system from $120 \, kPa$, $30^{\circ}C$ to $200^{\circ}C$. Calculate the work produced during the heating in $\frac{kJ}{kg}$.

Given:
$$M_{N_2} = 28 \frac{kg}{kmol}$$
, $M_{CO_2kmol} = 44 kg$ (25 marks)

. \	รหัส
ชื่อ-สกุล	3 YI GI
10 miles ——	

4) Octane gas (C_8H_{18}) is burned with 100% excess air in a constant pressure burner. The air and fuel enter this burner steadily at standard conditions and the products of combustion leave at $257^{\circ}C$. Calculate the heat transfer, in $\frac{kJ}{kg_{fuel}}$, during this combustion. (25 marks)

ชื่อ-สกุล	รหัส
-----------	------

5) What is the adiabatic flame temperature of methane (CH_4) when it is burned with 30% excess air. All reactants enter at $25^{\circ}C$, 1 atm. (25 marks)