มหาวิทยาสัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบกลางภาค ประจำภาคการศึกษา 1	ปีการศึกษา 2553
วันที่ 7/8/ 2553	เวลา 9.00 — 12.00 น.
วิชา 221-381: Computer Applications in Civil Engineeri	ing
ห้องสอบ R200	
ชื่อ-สกุล รหัส	

คำชื้แจง

- 1.ข้อสอบทั้งหมดมี 7 ข้อ คะแนนรวม 140 คะแนน คั้งแสดงในตารางข้างล่าง
- 2.ข้อสอบมีทั้งหมด 5 หน้า
- 3.ให้ทำหมดทุกข้อลงในสมุดคำตอบ
- 4.ห้ามนำเอกสารใดๆ เข้าห้องสอบ **ทุจริตจะได้ E**
- 5.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 6.กระคาษทคที่แจกให้ไม่ต้องส่งคืน ถ้าไม่พอขอเพิ่มที่อาจารย์คุมสอบ
- 7.ห้ามหยิบ หรือยืมสิ่งของใคๆ ของผู้อื่นในห้องสอบ
- 8. อนุญาตให้นำ *Dictionary* เข้าห้องสอบได้

9. GOOD LUCK

ตารางคะแนน

ข้อที่	คะแนนเต็ม	ได้
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
รวม	140	

Assoc. Prof. Dr. Suchart Limkatanyu

Problem 1 (20 Points)

Verify that the nonlinear equation shown below has a root on the interval (0, 1). Next perform the **bisection method** to determine $x_r^{(3)}$, the third approximation to the location of the root, and determine $(x_l^{(4)}, x_u^{(4)})$, the next enclosing interval.

$$f(x) = \ln(1+x) - \cos x$$

Note: you have to show all necessary steps.

Problem 2 (20 Points)

Verify that the nonlinear equation shown below has a root on the interval (0, 1). Next perform the *false position method* to determine $x_r^{(3)}$, the third approximation to the location of the root, and determine $(x_l^{(4)}, x_u^{(4)})$, the next enclosing interval.

$$f(x) = e^{-x} - x$$

Note: you have to show all necessary steps.

Problem 3 (20 Points)

A frame structure is composed of two vertical columns and one horizontal beam as shown above. The vertical columns are of length L_c and have modulus of elasticity E and moment of inertia I_c . The horizontal beam connecting the tops of the columns is of length L_b with modulus of elasticity E and moment of inertia I_b . The structure

is pinned at the bottom and is free to move laterally at the top. The buckling load P_{cr} for the structure is given by

$$P_{cr} = \left(kL_c\right)^2 \frac{EI_c}{L_c^2}$$

where kL_c is the smallest positive solution of the following nonlinear equation:

$$f(x) = kL_c \tan kL_c - 6\frac{I_b L_c}{I_c L_b}$$

Suppose $E = 30 \times 10^6 \ lb/in^2$, $I_c = 15.2 \ in^4$, $L_c = 144 \ in$, $I_b = 9.7 \ in^4$, and $L_b = 120 \ in$. Use the **Secant Method** to solve for kL_c with initial guesses $(kL_c)^0 = 0.8$ and

 $(kL_c)^0 = 1.0$ and then determine the buckling load of the structure.

Note: Make your own decision when the calculation should be stopped.

Problem 4 (20 Points)

Use the **Newton's Method** to determine an approximate root of the following nonlinear equation

$$f(x) = x^3 + 2x^2 - 3x - 1$$

Use $x^0 = 1.0$ as the initial approximation.

Carry out the calculation only for four iterative steps:

Note: you have to show all necessary steps.

Problem 5 (20 Points)

Use the Gauss Elimination with Partial Pivoting technique to solve for the solution of the following linear system

$$4x_1 - 2x_2 + 2x_3 = 8$$

$$8x_1 + 6x_2 - 2x_3 = 12$$

$$6x_1 + 4x_2 + 4x_3 = 30$$

Note: you have to show all necessary steps.

Problem 6 (20 Points)

Consider the following linear system

$$x_1 + 4x_2 + x_3 = 7$$
$$x_1 + 6x_2 - x_3 = 13$$
$$2x_1 - x_2 + 2x_3 = 5$$

- (a) Are these equations linearly independent?.
- (b) Compute the *Doolittle's LU* Matrices.
- (c) Solve the system with forward and back substitutions.

Note: you have to show all necessary steps.

Problem 7 (20 Points)

Given that matrix A can be decomposed as:

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

where

$$\mathbf{L} = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -3 & 1 \end{bmatrix}$$

Determine A⁻¹

Note: you have to show all necessary steps.

สูตรที่ให้สำหรับการสอบกลางภาค

วิธีแบ่งครึ่งช่วง (Bisection method)

$$x_M = \frac{x_L + x_R}{2}$$

วิธีการ วางตัวผิดที่ (False-position method)

$$x_1 = \frac{x_L f(x_R) - x_R f(x_L)}{f(x_R) - f(x_L)}$$

วิธีของนิวตัน-ราฟสัน (Newton-Raphson method)

$$\Delta x_{k+1} = -\frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = x_k + \Delta x_{k+1}$$

วิธีเซแคนต์ (Secant method)

$$\Delta x = -\frac{f(x_1)(x_0 - x_1)}{f(x_0) - f(x_1)}$$

$$x_2 = x_1 + \Delta x$$