Name	ID
. • • • • • • • • • • • • • • • • • • •	

PRINCE OF SONGKLA UNIVERSITY DEPARTMENT OF CHEMICAL ENGINEERING, FACULTY OF ENGINEERING

190-500

Examination paper: Midterm Exam

Semester: 1/2010

Date: Aug 1, 2010

Time: 9.00-12.00

Subject: Advanced Engineering Mathematics for Chemical Engineers

Room: S 817

Instruction:

Calculator, books, notes and class materials are allowed.

No talking or discussing during taking this exam.

Items	Full scores	Your scores
1	20	
2	35	
3	45	
Total	100	

1. (20 points) Solve the following equations:

(a)
$$\left(\frac{3y^2 - x^2}{y^5}\right) \frac{dy}{dx} + \frac{x}{2y^4} = 0$$
; $y(1) = 1$

(b)
$$y \frac{d^2 y}{dx^2} + (\frac{dy}{dx})^2 = \frac{dy}{dx}$$
; $y(0) = 1$, $y'(0) = 2$

2. (35 points) Two vertical, cylindrical tanks, each 10 m high, are installed side-by-side in a tank farm, their bottoms at the same level. The tanks are connected at their bottoms by a horizontal pipe 2 meters long, with pipe inside diameter 0.03 m. The first tank (1) is full of oil and the second tank (2) is empty. Moreover, tank 1 has a cross-sectional area twice that of tank 2.

The first tank also has another outlet (to atmosphere) at the bottom, composed of a short horizontal pipe 2 m long, 0.03-m diameter. Both of the valves for the horizontal pipes are opened simultaneously.

Assume laminar flow in the horizontal pipes, and neglect kinetic, entrance-exit losses.

For laminar flow, the flow rates are given by $q_1 = \frac{ky}{L}$, $q_2 = \frac{k(y-x)}{L}$; k is a constant.

- (a) Show that the volume balance ratio yields the equation: $\frac{1}{2} \frac{dx}{dy} = -\frac{q_2}{q_1 + q_2}$.
- (b) What is the maximum oil level (x_{max}) in tank 2?

3. (45 points) Thin, metallic circular fins of thickness b can be attached to cylindrical pipes as heat transfer promoters. The fins are exposed to an ambient temperature T_A , and the root of each fin contacts the pipe at position r = R, where the temperature is constant, T_w . The fin loses heat to ambient air through a transfer coefficient h. The metallic fin transmits heat by conduction in the radial direction.

(a) Show that the steady-state heat balance on an elementary annular element of fin yields the equation

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) - \left(\frac{2h}{bk}\right)(T - T_A) = 0$$

(b) Define a dimensionless radial coordinate as $x = r\sqrt{\frac{2h}{bk}}$ and introduce $y = T - T_A$, and thus show the elementary equation

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - x^2 y = 0$$

describes the physical situation.

- (c) Apply the method of Frobenius and find the roots of the indicial equation to show that $C_1 = C_2 = 0$.
- (d) Complete the solution and show that the first few terms of the solution are

$$y = a_0 \left[1 + \left(\frac{x}{2} \right)^2 + \left(\frac{x}{2} \right)^4 \left(\frac{1}{2!} \right)^2 + \dots \right]$$

$$+ b_0 \left\{ \ln(x) \left[1 + \left(\frac{x}{2} \right)^2 + \left(\frac{x}{2} \right)^4 \frac{1}{(2!)^2} + \dots \right] - \left[\left(\frac{x}{2} \right)^2 + \frac{3}{2} \left(\frac{x}{2} \right)^4 \frac{1}{(2!)^2} + \dots \right] \right\}$$