มหาวิทยาลัยสงขลานครินฯ ร์ คณะวิศวกรรมศาสตร์

สอบปลายภาค ประจำภาคการศึกษา 1

ปีการศึกษา 2553

วันที่ 15/10/ 2553

เวลา 9.00 — 12.00 น.

วิชา 221-381: Computer Applications in Civil Engineering

ห้องสอบ A401

ชื่อ-สกุล..... รหัส...... รหัส......

คำชี้แจง

- 1.ข้อสอบทั้งหมดมี 6 ข้อ คะแนนรวม 165 คะแนน คั้งแสด ในตารางข้างถ่าง
- 2.ข้อสอบมีทั้งหมด 3 หน้า (ไม่รวมปก)
- 3.ให้ทำหมดทุกข้อลงในสมุดคำตอบ
- 4.ห้ามนำเอกสารใดๆ เข้าห้องสอบ ท**ูจริตจะได้ E**
- 5.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 6.กระคาษทคที่แจกให้ไม่ต้องส่งคืน ถ้าไม่พอขอเพิ่มที่อาจารย์คุมสอบ
- 7.ห้ามหยิบ หรือยืมสิ่งของใคๆ ของผู้อื่นในห้องสอบ
- 8. อนุญาตให้นำ Dictionary เข้าห้องสอบได้
- 9. GOOD LUCK

ตารางคะแนน

ข้อที่	กะแนนเต็ม	ได้			
1	30				
2	30				
3	30	_			
4	30				
5	30				
6	15	_			
รวม	165				

Assoc. Prof. Dr. Suchart Limkatanyu

Problem 1 (30 Points)

A thermodynamics student needs to determine whether Freon-12 under a pressure of $P = 400 \, kPa$ and with a specific volume of $v = 0.042 \, m^3 \, / \, kg$ is in a saturated or superheated state. The answer to this question depends upon how the specific volume of $v = 0.042 \, m^3 \, / \, kg$ compares with the specific volume of saturated Freon-12 vapor, v_g , at a pressure of $P = 400 \, kPa$. If the given vapor pressure is below v_g then the Freon-12 is in a saturated state; otherwise it is in a superheated state.

The available thermodynamic tables provide the fellowing values for the specific volume of saturated Freon-12 vapor as a function of pressure:

P(kPa)	308.6	362.6	423.3	491.4
$v_g(m^3/kg)$	0.055389	0.047485	0.040914	0.035413

Use the cubic interpolation to determine if Freon-12 under a pressure of $P = 400 \, kPa$ and with a specific volume of $v = 0.042 \, m^3 \, / \, kg$ is in a saturated or superheated state.

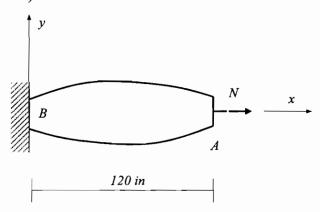
Problem 2 (30 Points)

The experimental data relating a dependent variable y and two independent variables x_1 and x_2 are given as follows:

i	1	2	3	4
x_{1i}	10	10	20	50
x_{2i}	5	45	25	25
y_i	50	40	36	32

Fit a function $y = a + bx_1^2 + cx_2^2$ to these data set with regression (Least Square) and estimate the value of y for $x_1 = 10$ and $x_2 = 45$.

Hint: You start from the definition of Least Square


Problem 3 (30 Points)

For the data given below

xi	3	4.5	7	9
f(xi)	2.5	1	2.5	0.5

- (a) How many constants do we need to determine if quadratic splines are used to fit these data?.
- (b) How many constants do we need to determine if cubic splines are used to fit these data?.
- (c) Set up the system of equations needed to determine all constants if quadratic splines are used.

Problem 4 (30 Points)

The deformation of the axially loaded member shown below is completely defined by the differential equation:

$$\frac{\partial u}{\partial x} = \frac{N(x)}{A(x)E(x)}$$

where u is Axial Displacement; N(x) is axial force applied; E(x) is Young's modulus of elasticity; and A(x) is cross-sectional area.

Determine the relative displacement of Point A with respect to Point B if this problem can be easily solved by integrating the following expression:

$$u_A - u_B = \int_0^{120} \left(\frac{dx}{\frac{-30}{36} x^2 + 100x + 3000} \right)$$

3

- (a) Employ the Composite Trapezoidal Rule of Integration to perform this integration, using h = 10 in.
- (b) Employ the Composite Simpson's 1/3 Rule of Integration to perform this integration, using h = 30 in.

Trapezoidal Rule:

$$I = \left(x_{i+1} - x_i\right) \left\lceil \frac{f\left(x_{i+1}\right) + f\left(x_i\right)}{2} \right\rceil$$

Simpson's 1/3 Rule:

$$I = (x_{i+2} - x_i) \left[\frac{f(x_i) + 4f(x_{i+1})}{6} + f(x_{i+2}) \right]$$

Problem 5 (30 Points)

Determine the values of the constants $\alpha_0, \dots \alpha_3$, so that the integration rule

$$\int_{0}^{1} f(x) dx = \sum_{i=0}^{3} \alpha_{i} f(i/3)$$

is exact for all polynomials of degree ≤ 3 .

Problem 6 (15 Points)

- (a) What is major difference between the Regression and Interpolation?
- (b) What is the main advantage of the Spline interpolation scheme?
- (c) What is the main feature of the Lagrange Polynomial?