سا	.
# c cc c	<16 av
nel-01710	รหิส
20 *** 100.000000000000000000000000000000	•••••

มหาวิทยาลัยสงขลานค^รุ่นทร์ คณะวิศวกรรมศาส¢ร์

ข้อสอบปลายภาค: ภาคการศึกษาที่ 1

ปีการศึกษา: 2553

วันที่สอบ: 4 ตุลาคม 2553

เวลา: 9.00-12.00

วิชา: 230-610 เทอร์โมไดนามิกส์วิศวกรรมเคมีขั้นสูง

ห้องสอบ: หัวหุ่นยนด์

ทุจริตในการสอบ โทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาค การศึกษา

- อนุญาตให้นำเอกสาร ดำรา พจนานุกรมอิเล็กโท มนิก และเครื่องคิดเลขทุกรุ่น เข้าห้องสอบได้
- ห้ามหยิบยืมเอกสาร และเครื่องคิดเลขจากผู้อื่น
- เขียนชื่อ และรหัสทุกหน้า
- กรณีกระดาษคำตอบไม่พอให้ใช้ด้านหลังได้
- ใช้ดินสอทำข้อสอบได้
- ข้อสอบมีทั้งหมด 5 ข้อ (10 หน้า รวมปก)
- คิดคะแนนรวมทั้งหมดเพียง 125 คะแนน (คะแนนที่ทำได้เกิน 125 นับเป็นโบนัส)

ฆ้อ	คะแนนเต็ม	คะแนนที่ได้
1	50	
2	25	
3	25	
4	25	
5	25	
	150	

ผศ.ตร. ลือพงศ์ แก้วศรีจันทร์ ผู้ออกข้อสอบ ชื่อ-สกุล.....รหัส......

- 1. (50 points) Compute the fugacities of CH_4 (1) and CO_2 (2) in an gas mixture in which $y_1 = 0.4$ at 333.15 K and 70 bar total pressure assuming that
 - (a) the Lewis-Randall rule is available; US NG FIG. 7.4-1
 - (b) virial equation of state is available:
 - b.1) USING TABLE 6.4-1 for parameter a and b of the van der Waals parameters which derived for parameter B in virial EOS as $B_{ij} = b_{ij} \frac{a_{ij}}{RT}$ and $B_{ij} = B_{ji} = \sum_{i=1}^{2} y_{ij} B_{ij}$ (parameter C, D,... of virial equation were neglected.)
 - b.2) mixing rule was available as $E_{mix} = \sum_{i} \sum_{j} y_{ij} B_{ij}$

ชื่อ-สกุล.....รหัส......รหัส......

(25 points) Using the following data, estimate the total pressure and composition
of the vapor in equilibrium with a 35 mol % ethanol (1) solution in water (2) at
78.15°C by van Laar model: data at 78.15°C

Vapor pressure of ethanol (1) = 1.006 bar

Vapor pressure of water (2) = 0.439 tar

$$\lim_{x_1 \to 0} \gamma_1 = \gamma_1^{\infty} = 1.6931$$

$$\lim_{x_2 \to 0} \gamma_2 = \gamma_2^{\infty} = 1.9523$$

ชอ-สกลรหสรหส	ᆆ	٠	
	ชอ-สกล	รหส	

3. (25 points) Calculate activity coefficients of combinatorial part of UNIFAC model for the system of n-pentane (1) and benzene (2) at 40°C ,whereas, x_1 = 0.953.

الم	•
ซึถ_สกล	รหัส
ng-milet	

4. (25 points) (25 points) The chemical reaction for the dissociation of nitrogen tetraoxide is $N_2O_4 \Leftrightarrow 2NO_2$, the reported standard-state Gibbs energy change for this reaction over a limited temperature is

$$\Delta_{\it RXN} {\it G(T)} = 57.33 - (0.17677) T \; {\it kJ/niol} \; {\it of} \; N_2 O_4 \; {\it reacted} \label{eq:deltaRXN}$$

For the pure component, ideal gas at 1 bar standard state and T in Kelvins

- (a) What is the standard-state heat of reaction for the dissociation of nitrogen tetraoxide.
- (b) Determine the equilibrium composition of this mixture at 50°C and 10 bar.

ชื่อ-สกุล.....รหัส......รหัส......

5. (25 points) The reaction SO₂ + ½O₂ ⇔SO₃ is used as a step in the process to convert waste sulfur dioxide to sulfuric acid. Starting with equimolar amounts of sulfur dioxide and oxygen, determine th∈ extent of reaction and chemical equilibrium constant at 1000 K and 100 bars. Hint: neglect effects of fugacity coefficients.