PRINCE OF SONGKLA UNIVERSITY

FACULTY OF ENGINEERING

Final Examination: Semester I
Date : 9 October, 2010
Subject : 231-201 Material and Energy Balances

Academic year : 2010
Time : 13.30-16.30
Room : A401

รายละเอียดการทำข้อสอบ

1. ห้ามนำข้อสอบบางส่วนหรือทั้งหมคออกจากห้องสอบ
2. สามารถนำหนังสือหรือเอกสารทุกชนิดเข้าห้องสอบได้
3. ใช้ดินสอหรือปากกาในการทำข้อสอบได้
4. ข้อสอบมีทั้งหมค 6 ข้อ มีจำนวนทั้งหมค 7 หน้า
5. อนุญาตให้ทำข้อสอบด้านหลังกระดาษคำตอบแต่ละข้อได้
6. กรอกชื่อและรหัสนักศึกษาด้านหน้าข้อสอบและกรอกร'ศัสในข้อสอบทุกหน้าของกระดาษ

ข้อที่	คะแนนเต็ม	คะแนนที่ได้
1	25	
2	20	
3	25	
4	25	
5	20	
6	15	
รวม	130	

1. A stream of air in pressure vessel at $80^{\circ} \mathrm{C}$ with partial pressure of water in the air at 370 mmHg contains 8% water by volume. (25 marks)
1) Calculate total pressure of the air stream in the system.
2) What is the condition (superheated, saturation, or conder sation) of this air stream?
3) Calculate the $\%$ of the vapor that condenses to get the new saturation condition.
4) The final temperature of the air stream if the system is heated to saturation condition at constant pressure.
2. An liquid mixture of n-hexane and toluene is in equilibrium with it vapor at $40^{\circ} \mathrm{C}$. The content of n -hexane in the liquid mixture is 0.79 and the toluene content is 0.21 . (20 marks)
1) What is the system pressure?
2) Calculate the composition of the vapor in the system.
3. Use the humidity chart (psychrometric chart) to estimate the condition of the humid air at $35^{\circ} \mathrm{C}$ and 30% relative humidity:
1) The wet-bulb temperature, moisture content, and specific enthalpy of humid air.
2) The mass flow rate of water in $25 \mathrm{~kg} / \mathrm{h}$ of dry air flow at these conditions.
3) If the air is heated up to $45^{\circ} \mathrm{C}$. How much enthalpy is rec uired?
(25 marks)
\qquad
4. Two streams of water are mixed and heated in the heat exchanger to form the saturated steam feed to a boiler. Process data are given here.

Feed stream 1: $\quad 150 \mathrm{~kg} / \mathrm{h}$ at $50^{\circ} \mathrm{C}$
Feed stream 2: $275 \mathrm{~kg} / \mathrm{h}$ at $74^{\circ} \mathrm{C}$

1) Draw flow diagram of the heat exchanger.
2) Calculate the required heat input to the heat exchanger in kJ / h if the exiting steam is saturated steam at $100^{\circ} \mathrm{C}$.

Neglect the kinetic energies of the liquid inlet streams. (25 marks)
\qquad
5. Calculation of heat of reaction. (20 marks)

1) The standard heat of the combustion of n-butane vapor $: s$
$\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}): \Delta \mathrm{H}_{\mathrm{r}}^{\mathrm{o}}=:-2878 \mathrm{~kJ} / \mathrm{mol}$
Calculate the rate of enthalpy change, $\Delta \dot{\mathrm{H}}(\mathrm{kJ} / \mathrm{h})$, if $1600 \mathrm{~mol} / \mathrm{h}$ of CO_{2} is produced in this reaction and the reactants and products are all at $25^{\circ} \mathrm{C}$.
2) Determine the standard heat of reaction for the combusion of $20 \mathrm{~mol} / \mathrm{h}$ liquid n-pentane, assuming $\mathrm{H}_{2} \mathrm{O}(1)$ is a combustion product.
$\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
6. Calculate the heating rate required to raise $50 \mathrm{~kg} / \mathrm{h}$ of Nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ from $100^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$ in constant-volume vessel. The heat capacity of $\mathrm{N}_{2} \mathrm{O}$ in this; temperature range is given by the equation $\mathrm{Cp}=\left(\mathrm{kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}\right)=0.95+9.37 \times 10^{-4} \mathrm{~T}$, where T is ir ${ }^{\circ} \mathrm{C}$ (15 marks)
