\qquad

Student Name:

PRINCE OF SONGKLA UNIVERSITY

FACULTY OF ENGINEERING

Final Examination: Semester 1
Date: October 10, 2010
Subject: 225-348 Operations Research

Academic Year: 2010
TIme: 09:00-12:00

Instructions:

1. There are 5 questions, 100 points (40%).
2. Books and notes are allowed.
3. A calculator and a dictionary are allowerd.
4. Borrowing things from other students is prohibited.

Question No.	Full Score	Score
1	25	
2	15	
3	15	
4	30	
5	15	
Total	100	

Napisporn Memongkol
Runchana Sinthavalai
Instructor

1. (25 Points) A toy manufacturer supplles four retall outlets by three factorles. The transportation costs from each factory "o each retall outlet are shown in the following table.

	A	B	C	D	Supply (Unlts/ week)
1	4	7		\square 1 100	100
2		- 3		8	200
3	8				150
Demand (Units/ week)	80	90	120	160	

The retired manager has used his experlence and performed the transportation system as shown in the table. However, the new manager would like to plan for new transportation system by using the transpoitation method for the minimum cost. Does the solution from new manager save cost for the manufacturer? How much?
2. (15 Points) Two companies share the bulk of the market for a particular kind of product. Each is now planning its new marketing plan for the next year in an attempt to wrest some sales away from the other company. (The total sales for the product are relatively fixed, so one compary can increase its sales only by winning them away from the other.) Each company is considering three possiblities: (1) better packaging of the product, (2) Increased advertising and (3) a slight reduction in price. The costs of the three alternatives are quite comparable and sufficiently large that each company will select iust one. The estimated effect of each combination of alternatives on the increase percentage of the sales for company 1 is as follows:

Strategy		Company 2		
		1	2	3
Company	1	2	3	1
	2	1	4	0
	3	3	-2	-1

Each company must make its selection before learning the decision of another company.
2.1 Without eliminating dominated strategies, use the minimax (or maximin) criterion to determine the best strategy for each company.
2.2 Now identify and eliminate dominated strategle's as far as possible. Make a list of the dominated strategles, showing the order in which you were able to eliminate them. Then show the resulting raduced payoff table with no remaining dominated strategies.
2.3 Is there a saddle point?
3. (15 Points) The Wendy Corporation has three branch plants with excess production capacity. Fortunately, the corporetion has a new product ready to begin production, and all three plants have thls capacity, so some of the excess capacity can be used in this way. This product can be made in three sizes-large, medium, and small- that yield a net unit profit of $\$ 420, \$ 360$, and $\$ 300$, respectively. Plant \# 1, 2, and 3 have the excess capacity to produce 750, 900, and 450 units per day of this product, respectively, regardless of the size or combination if sizes involved.

The amount of avalable in-process storage space also imposes a limitation on the production rates of the new product. Plant \# 1, 2, and 3 have 13,000, 12,000, and 5,000 square feet, respectively; of in-process storage space available for a day's production of this product. Each nit of the large, medium, and small slzes produced per day requires 20,15 , and 12 square feet, respectively.

Sales forecasts indlcate that avallable $900,1,200$, and 750 units of the large, medlum, and small sizes respectively would be scld per day.

At each plant, some employees will need tio be lald off unless most of the plants' excess production capacity can be used to produce the new product. To avold layoff if possible, management has decided that the plants should use the same percentage of their excess capacity to produce the new product.

Management wishes to know how much of each product size should be produced by each plant to maximize profit.

Formulate a linear programming model for tris problem.
4. (30 Points) Consider the following problem.

Minimize $Z=0.4 \mathrm{x}_{1}+0.5 \mathrm{x}_{2}$
Subject to

$$
\begin{aligned}
& 0.3 x_{1}+0.1 x_{2} \leq 2.7 \\
& 0.5 x_{1}+0.5 x_{2}=6 \\
& 0.6 x_{1}+0.4 x_{2} \geq 6
\end{aligned}
$$

and

$$
x_{1} \geq 0, \quad x_{2} \geq 0
$$

4.1 Using the Big M method, work through the simplex method step by step to solve the problem
4.2 Using the Two-phase method, work through the simplex method step by step to solve the problem

Cont' Question 4

5. (15 Points) Skyway Alrines is considering alr service from its hub of operations in Clcely, to WIsconsin, and Washington. Skyway ras one gate at the Clcely Alrport, which operates 12 hours per day. Each flight equires 1 hour of gate time. Each flight to Wisconsin consumes 15 hours of pllot crew time and is expected to produce a profit of $\$ 2,500$. Serving Washington uses 10 hours of pllot crew time per flight and will result in a profit of $\$ 2,000$ per filght. Pilot crew labor is limited to 150 hours per day. The market for service to Wisconsin is limited to nine flights per day.
a) Formulate linear programming to maximize the profit for Skyway Alrline.
b) Use the graphical method to solve this modal.

																-									
																-									
																-									
																-									
																-									
																-									
																-									
																-									
																-									
																-									
																-									
																-									
																									\square
																-									
																-									

