Prince of Songkla University Faculty of Engineering

Final Examination: Semester I Academic Year: 2010

Date: October 4, 2010 Time: 9:00-12:00

Subject: 226-304 Heat Treatment Technology Room: S201

ทุจริตใน การสอบ	โทษขึ้นต่ำปรับตกในรายวิชา ใ้นและพักการเรียน	1	ภาคการศึกษา
1149AI P2011 1946 51	אנוז פרפו ונו נאכ פופסאנים בפונו פאכן ונואדו פרבו ואאנו בבונם	1	31. IMJ I. ISMJ

Namestudent ID.....student American student ID......

Instruction:

1. There are 3 parts,

Part I

42 questions 125 points

Part II

16 questions 20 points

Bonus part

10 questions 10 points

- 2. Attempt all questions.
- 3. Only a hand-written note on two-sided A4 and a dictionary are allowed.
- 4. Borrowing things form other students is prohibited.

Napisporn Memongkol
Instructor

Part I: Answer all the questions (125 points)

226-304 Heat Treatment Technology

 (4 points) Commonly, the used of heat treatment furnaces can be divided into 4 classes. What are they?

Student ID

Page 1 of 11

2.	(2 points) According to the source of heat, heat treatment furnaces can be divided into two classes;	
3.	(2 points) According to the type of operation, heat treatment furnaces can divided into two classes;	be
4.	(3 points) Explain advantages offered by salt-bath furnace over other heat treatment furnaces.	
5.	(3 points) Give a brief account of various commercially available furnace atmospheres in heat treatment.	
6.	(3 points) How many stages of inspection in heat treatment? What are they?	
	••••••••	
7.	(3 points) The inspection in heat treatment can be divided into three classes. What are they?	
8.	(2 points) What are the two different methods of surface hardening? First method is	
226	S-304 Heat Treatment Technology Student ID	Page 2 of

BaCO ₃ Is	s) What is the purpose of BaCO ₃ in sused forethe equations below and give an another size of the equations below and give an another size of the equations below and give an another size of the equations below and give an another size of the equations below and give an another size of the equations below and give an another size of the equations are size of the equations	Carburizing process?
	BaCO₃ →+ CO₂	(10.1)
	$CO_2 + C \rightarrow 2CO$ $2CO + Fe \rightarrow \dots + CO_2$	(10.2) (10.3)
2. (2 point percent	s) As compared to conventional atmo	sphere carburizing, how many
•	s) What are the limitations of vacuum	•
3. (2 point 4. (1 points cyaniding	s) Why are the use of a closed pot	•••••

Student IED

226-304 Heat Treatment Technology

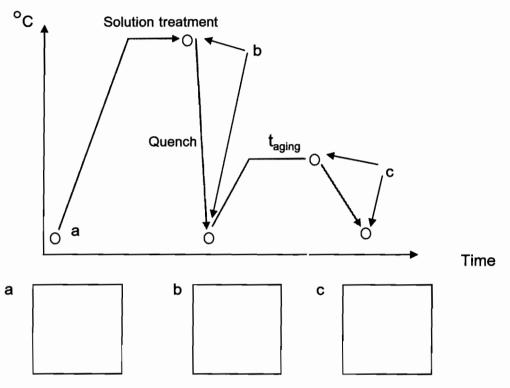
16. (2 points) Why cyaniding process is less time consuming? Because of
17. (2 points) Compare cyaniding and carbonitriding case hardening processes Cyaniding is
18. (4 points) Complete the graph of post carburizing heat treatment below.
Temperature
850-900C 760-780C 150-170C a) b) c) d) Time
a is c is b is d is
19. (2 points) What kinds of steel using carbonitriding process for improving wear resistance?
20. (3 points) Compare to carburizing process, the carbonitriding process are better than carburizing process in, and
21. (1 points) What is the kind of steel using nitriding processes the most effective?
226-304 Heat Treatment Technology Student ID

4 of 11

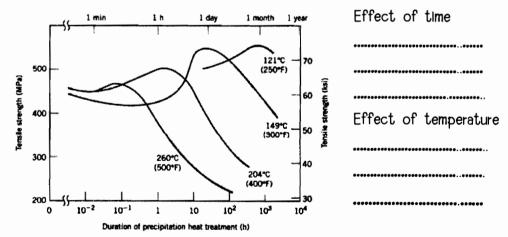
Nitriding process?	s the material used to cover	the portion not to be nitrided in
1)	re the advantages of the N	••
	wo examples of the applicati	
1)		
Process	Material	Typical surface hardness, VHN
Carburizing		850
Boronizing		1500
Chromizing	Carbon steel, tool steel	
Toyota diffusion process	Tool steel	•
28. (2 points) what is	(aluminum alloy) 6061 T651?	***************************************
226-304 Heat Treatment	Technology Stude	nt IDPage

_		In Induction harde	•	_			
		the component d	•				<i>(</i> 1)
		, and	_		of the	component	(last
tı	vo facto	rs depend on temp	erature)				
-	,	List the disadvant	•	ŭ			
		••••••					
31. (6	points)	Explain the three	methods of	flame hardening?			
1)	•••••	••••••	***************************************	***************************************			
	**********	••••••••••••••••••••••••••••••	***************************************				

2)	***********	••••••	••••••••	************			
	*********	•••••••	•••••••••	••••••••••			
۵,		•••••••••••••					
3)	***********		••••••••••	••••••••••••			
	**********	•••••••••••••••	***************************************	****************			
	**********		***************************************	***************************************			
32. (4	points)	The quantity of g	aseous hvd	rocarbon using in	vacuum	carburizina	
	epend on		, ,	o o o o o o o o o o o o o o o o o o o			
	a)	•••••••••	************	••••			
	b)	***************************************					
	c)	***************************************	•••••	••••.			
	d)	***************************************	•••••••••	••••.			
33. (2	points)	What is the basic	aim of heat	treatment alumir	nium alloy	/s?	
•••	**************	••••••••••••••••••	••••••••••	***************************************			
34. (2	points)	What are the two	stages of	age hardening of	aluminum	alloys?	
•••	*************	•••••••••••••••••••••••••••••••••••••••	•••••••••••	***************************************			
•••		••••••••••••••					
226-30	4 Heat T	reatment Technology		Studen ID		••	Page 6 of 11


	alloy?			
		Letter	Condition of alloy	
		F		
		0		
		Т		
		H		
36	. (4 points) Fill in the	alloying element in the Lable below	
	4 digits se	eries	Aluminium cast alloys	
	2xx.x			
	4xx.x			
	7xx.x			
	8xx.x			
	Natural agii	ging	f alloying element on properties of Aluminum	
	Alloying		Properties of aluminum allcy	
	Copper		,	
	Magnesium			
	Manganese			
ĺ	Silicon			
39.	••••••••		the applications of Al alloy series 2xxx?	
226	-304 Heat T	reatment Te	chnology Student ID	Page 7 o

35. (4 points) What is the meaning of specific letter of condition or temper of Al


40. (2 points) Give two examples of non-heat treatable aluminum alloys.

..... and

41. (6 points) From the precipitation hardening of aluminium graph below, draw the microstructures of aluminium at each point.

42. (4 points) From the diagram below, explain the effect of time and temperature of precipitation heat treatment

PART II: Fill in the blank using the letter (a-mm) provided in the next page that is related to the questions (1 point each) 20 points

1.	Liquid carburizing is also known as
2.	The most widely used method of carburizing is
3.	The advantages of liquid carburizing are
	and
4.	In Pack Carburizing, the depth of penetration depends on
5.	Recent development of gas carburizing technique is the use of as a
	carrier gas
6.	Main advantage of Vacuum Carburizing Is
7.	In vacuum carburizing the gaseous hydrocarbon is introduced into the furnace
	give two examples of gaseous hydrocarbon and and
8.	Sub zero treatment is also called "" process.
٩.	In Nitriding process, gas is passed into the furnace at about
	550°C, it dissociates into nitrogen and hydrogen
10.	The Boronizing process can apply to any ferrous material but adopted for
	steels and steels
11.	In Boronizing process, boron diffuses inward; andlayers are formed
12.	In process, the components are packed with chromium
	powder and additive and put in the furnace.
13.	Aluminum alloys can be divided into two forms, which are and

14.	Age hardening of aluminium is also called as
15.	Most frequently, aluminium parts are quenched by immersion in
16.	When annealing copper that contains oxygen, the hydrogen in the atmosphere
	must be kept to a minimum to avoid
	·

Ansv	ver	s for part II				
а)	hot water	u)	heating time is short		
b)	gas Carburizing	v)	diffusion		
С	:)	solid carburizing	w)	hydrogen		
d	l)	ethane	x)	carbon dioxide		
е)	methane	y)	iron carbide		
f)	propane	z)	minus treatment		
9)	heat transfer is rapid	aa)	cryo treatment		
h)	freeze treatment	bb)	boronizing		
i))	very small furnace	cc)	chromizing		
j)	energy saving	dd)	cast		
k	:)	warm water	ee)	wrought		
I))	cold water	ff)	precipitation hardening		
n	n)	hardening	99)	oxygen		
n)	embrittlement	hh)	nitrogen		
c)	salt bath carburizing	II)	butane		
F	o)	carbon	jj)	octane		
q	})	mild	kk)	hydrogen sulfide		
r		alloy	∥)	ammonia		
s	(tool	mm)	rapidly cooling		
t	,)	Iron boride				
หัวข้อ 1.	ofe' Micr by	Part: ใส่ชื่อเพื่อน (ทั้งกลุ่ม บางกลุ่ม 2 คน ข ไปนี้ (ข้อละ 1 คะแนน) ทั้งหมด 10 คะแนน Postructural evolution and mechanical pr induction heating	roperties			
	CCT curves of low-carbon Mn-Si steels and development of water-cooled balnitic steels					
3.	Tec	chnological advances in steel heat treat	men [†] ,			
226-3	304	Heat Treatment Technology S	tudent I	D Page 10 of 11		

4.	Selection of heat treatment condition of the Mg-Al-Zn alloys
5.	Optimization of heat treatment parameters with the taguchi method for the A7050 Aluminium alloy
6.	An analyzing of heat treatment process planning
7.	Influence of heat treatment in sintering process on characteristics of Al_2O_3 - ZrO_2 ceramics systems
8.	Effect of heat treatment on microstructures and mechanical properties of spring steel
۹.	Heat treatment effects on microstructure and magnetic properties of Mn-Zn ferrite powders
10.	Effects of the heat treatment on corrosion resistance and microhardness of alloy steel
	Good Luck! to From Aj. Napis
226-	-304 Heat Treatment Technology Studert ID Page 11 of 11