Name : \qquad Student ID \# : \qquad

คณะวิศวกรรมศาสตร์
 มหาวิทยาลัยสงขลานครีนทร์

การสอบปลายภาค ประจำภาคการศ์กษาที่ ค
วันพุธที่ ब๓ ตุดาคม พ.ศ. bedam

ประจำปีการศึกษา beddn
เวลา ๑ต.ต๐-๑b.๓๐ น.
ห้องสอบ Robot / S817

ทุจริตในการตอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจรร์ และพักการเรียน \bullet ภาคการศึกษา

คำสั่ง
-. ข้อสอบมีทั้งหมด \& ข้อ ให้ทำถงในข้อสอบทุกข้อ
๒. อนぬาตให้ไช้เดรื่องคิดเลขได้
๓. ให้ไช้เครื่องมือเขียนแบบได้
๔. ไม่อนญาตเอกณารอึ่น ๆ

รศ.ดร. วราุธ วิสุทธิ์เมธางถูร
ผู่ออกข้อศอบ

ข้อ	คะนแแเต็ม	ได้
-	bo	
\square	bo	
0	bo	
σ	bo	
d	no	
รวม	-00	

\qquad
\qquad

1) 1.1) What is the type of each cam?
(a)

(a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad

Use the following pictures to give all correct answers to (questions 1.2) - 1.5)

1.2) Which cams have a translating follower? \qquad
1.3) Which cams have an oscillating follower? \qquad
1.4) Which cams and followers has sliding contacts? \qquad
1.5) All the cams above are (form closed / force-closed) \qquad

1.6) All the cams above are (form closed / force-closed) \qquad

Name : \qquad Student ID \# : \qquad
1.7) Name the type of the following gears.

\qquad
\qquad
2) (a) If input gear 2 is rotating 900 rpm ccw , find the speed and direction of output gear 7.

(b) A compound planetary gear train is shown below (not to scale). The data for gear numbers of teeth and input velocities are given as: $N_{3}=25, N_{4}=45, N_{5}=3 C, N_{6}=40, \omega_{\text {Arm }}=-50 \mathrm{rpm}$, and $\omega_{6}=20$ rpm. Determine the velocity of gear $3, \omega_{3}$.

\qquad
3) The four bar mechanism can be used as a rock crusher witl high mechanical advantage (MA) close to its toggle position. In this figure $R_{02 A}=20 \mathrm{~mm}, R_{A B}=40 \mathrm{~mm}, R_{04 B}=40 \mathrm{~mm}$, and $R_{0204}=60 \mathrm{~mm}$. Force $P=15 \mathrm{~N}$ is applied at the point A of link 2. Complet! the free body diagram of each link and use the graphical method to determine the reaction force Q from the rock.

Name: \qquad Student ID \#: \qquad
4) Link $A B C$ of a mechanism has the mass $m=3 \mathrm{~kg}$, and inoment of inertia about its centroid $I_{G}=1.2$ $\mathrm{kg} . \mathrm{m}^{2}$. The centroid of the links has an acceleration $A_{G}=2 \mathrm{~m} / \mathrm{s}^{2}$ downward, and the link has an angular acceleration $\alpha=1 \mathrm{rad} / \mathrm{s}^{2}$ clockwise. Find the magnitudes of the forces F_{A}, F_{B} and F_{C} acting on the link at point A, B, and C, respectively, with the directions as shcwn.

Name: \qquad
\qquad
5) The figure shows a system with three masses on a rotating shaft with $m_{1}=0.1 \mathrm{~kg}$ at 90° and radius $R_{1}=$ $20 \mathrm{~mm}, m_{2}=0.05 \mathrm{~kg} @ 240^{\circ}$ and radius $R_{2}=30 \mathrm{~mm}$, and $\mathrm{m}_{4}=0.05 \mathrm{~kg} @ 330^{\circ}$ and radius $\mathrm{R}_{3}=20 \mathrm{~mm}$.
Determine the magnitude and direction of the balance masses needed to dynamically balance the rotor. The balance masses will be placed in planes 4 and 5 at 20 mm 1 radius.

$$
+
$$

Scale $1 \mathrm{~mm}: 1 \mathrm{~kg} . \mathrm{mm}^{\wedge}$ 2
Scale $40 \mathrm{~mm}: 1 \mathrm{~kg} . \mathrm{mm}$

