Student ID # : _____

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 🖕

วันพุธที่ ๑๓ ดูลาคม พ.ศ. ๒๙๙๓

วิชา ๒๑๙-๓๒๙ / ๒๑๖-๓๒๙ : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา ๒๕๕๓

เวลา ๑๓.๓๐-๑๖.๓๐ น. ห้องสอบ Robot/S817

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริย และพักการเรียน 🖕 ภาคการศึกษา

<u>คำสั่ง</u>

- ข้อสอบมีทั้งหมด ๔ ข้อ ให้ทำลงในข้อสอบทุกข้อ
- อนุญาตให้ใช้เครื่องคิดเลขได้
- ๓. ให้ใช้เครื่องมือเขียนแบบได้
- ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุช วิลุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
•)ao	
leo	Ìno	
a)BO	
¢	ÌBO	
đ	ÌBO	
รวม	@ 00	

Use the following pictures to give all correct answers to questions 1.2) - 1.5)

1.2) Which cams have a translating follower ? _____

1.3) Which cams have an oscillating follower ? _____

1.4) Which cams and followers has sliding contacts ? _____

1.5) All the cams above are (form closed / force-closed)

1.6) All the cams above are (form closed / force-closed) ____

1.7) Name the type of the following gears.

Student ID # :

Name : _____

2) (a) If input gear 2 is rotating 900 rpm ccw, find the speed and direction of output gear 7.

(b) A compound planetary gear train is shown below (not to scale). The data for gear numbers of teeth and input velocities are given as : $N_3 = 25$, $N_4 = 45$, $N_5 = 3C$, $N_6 = 40$, $\omega_{Arm} = -50$ rpm, and $\omega_6 = 20$ rpm. Determine the velocity of gear 3, ω_3 .

3) The four bar mechanism can be used as a rock crusher with high mechanical advantage (MA) close to its toggle position. In this figure R_{02A} = 20 mm, R_{AB} = 40 mm, R_{04B} = 40 mm, and R₀₂₀₄ = 60 mm. Force P = 15 N is applied at the point A of link 2. Complete the free body diagram of each link and use the graphical method to determine the reaction force Q from the rock.

Scale 1 mm : 10 N

4) Link ABC of a mechanism has the mass m = 3 kg, and moment of inertia about its centroid $I_G = 1.2 \text{ kg.m}^2$. The centroid of the links has an acceleration $A_G = 2 \text{ m/s}^2$ downward, and the link has an angular acceleration $\alpha = 1 \text{ rad/s}^2$ clockwise. Find the magnitudes of the forces F_A , F_B and F_C acting on the link at point A, B, and C, respectively, with the directions as shown.

5) The figure shows a system with three masses on a rotating shaft with $m_1 = 0.1$ kg at 90° and radius $R_1 = 20$ mm, $m_2 = 0.05$ kg @ 240° and radius $R_2 = 30$ mm, and $m_1 = 0.05$ kg @ 330° and radius $R_3 = 20$ mm. Determine the magnitude and direction of the balance masses needed to dynamically balance the rotor. The balance masses will be placed in planes 4 and 5 at 20 mm radius.

Scale 1 mm : 1 kg.mm^2

+

Scale 40 mm : 1 kg.mm

+