$$
\begin{gathered}
\text { ชื่อ-สกุล.. } \\
\text { มหาวิทยาลัยสงขลานครินทร์่ } \\
\text { คณะวิศวกรรมศาสตร์ }
\end{gathered}
$$.รหัส \qquad

ข้อสอบกลางภาค: ภาคการศึกษาที่ 2
วันที่สอบ: 24 ธันวาคม 2553
วิชา: 230-510 Fluid Phase Equilibria

ปีการศึกษา: 2553
เวลา: 9.00-12.00
ห้องสอบ: A 400

ทุจริตในการสอบโทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศีกษา

- เขียนชื่อ รหัส บนกระดาษคำตอบทุกแผ่น
- อนุญาตให้นำเอกสารและเครื่องคำนวณทุกชนิดเข้าห้องสอบได้
- भ้ามหยิบยืมเอกสารจากผู้อื่น
- ข้อสอบทั้งหมคมี 5 ข้อ (ทั้งหมด 9 แผ่น รวมปก) ทำทุกข้อ(ใช้ดินสอทำได้) ถ้ากระดาษ คำตอบไม่พอ ให้ทำด้านหลัง

ข้อ	คะแนนเต็ม	คะแนนที่ได้
1	25	
2	20	
3	25	
4	120	
5		
รวม		

Happy Christmas 2010
ผศ. ดร. ลือพงศ์ แก้วศรีจันทร์
ผู้ออกข้อสอบ

ชื่อ-สกุล

รหัส

1. (25 points) (a) Find the value of Henry's law constant for benzene in ethanol at $40^{\circ} \mathrm{C}$. The partial vapor pressure of benzene is 12.8 mmHg if the mole fraction of benzene is 0.013 .
(b) At $25^{\circ} \mathrm{C}$, water at equilibrium with air at 1.0 atm contains about 8.3 ppm of dissolved oxygen by mass. Compute the Henry's law constant. The mole fraction of oxygen in air is 0.203 .
2. (20 points) The distribution coefficient for iodine between water (phase I) and carbon tetrachloride (phase II) at $25^{\circ} \mathrm{C}$ is accorded to its Henry constant of each phase. If a solution containing 0.01 mole of iodine and 1.0 mole of water is equilibrated with 1.0 mole of carbon tetrachloride at this temperature, find the final mole fraction of iodine in each phase. Neglect any water that dissolves in the carbon tetrachloride phase and any carbon tetrachloride that dissolves in the aqueous phase.
Hint: definition of distribution coefficient

$$
\begin{aligned}
& \left(K_{\mathrm{D}}\right)=x_{l(1)}^{\text {eq }} / x_{l(11)}^{\text {oq }}=\exp \left(\left(\mu_{i(1)}^{o(H)}-\mu_{i(1)}^{o(H)}\right) / R T\right)=k_{H, i}^{(1)} / k_{H, i}^{(11)} \\
& k_{H, i}^{(1)}=1.65 \times 10^{-4} \mathrm{~mol} / \mathrm{mole} \text { fraction } \\
& k_{H, i}^{(11)}=7.50 \times 10^{-2} \mathrm{~mol} / \mathrm{mole} \text { fiaction }
\end{aligned}
$$

3. (25 points) Assume that carbon tetrachloride and 1,1,1- trichloromethane (methyl chloroform) form an ideal solution. Look up the vapor pressures of the pure compounds at $25^{\circ} \mathrm{C}$ and plot a pressure-composition phase diagram for this temperature (four points besides the end points should give an adequate plot).

ชื่อ-สกุล
รหัส
(สำรองสำหรับข้อ 3)

4. (25 points) Partial pressure of component one for mixture of a binary system is $P_{1}=x_{1} P_{1}^{\cdot} e^{\left(\alpha\left(x_{2}^{3}-\frac{-}{2}-x_{2}^{2}\right)\right)}$. Using Gibbs-Duhem equation to prove that $P_{2}=x_{2} P_{2} \theta^{\left(a x_{1}^{3}\right)}$.
5. (25 points) According to the VLE data of ethanol (1) -water (2) at $25^{\circ} \mathrm{C}$, by non-linear regression method, partial pressure of each component is obtained: $P_{1}=x_{1} \dot{P}_{1}^{\cdot} \theta^{\left(\alpha x_{2}^{2}+\beta x_{2}^{3}\right)}$ and $P_{2}=x_{2} \dot{P}_{2}^{\cdot} \theta^{\left(\gamma x_{2}^{2}+\delta x_{2}^{3}\right)}$ whereas $\gamma=\alpha+3 \beta / 2$ and $\delta=-\beta$. If $\alpha=0.240342$ and $\beta=1.270178$, calculate $a_{1}^{R}, a_{1}^{H}, a_{2}^{R}, a_{2}^{H}, \gamma_{1}^{R}, \gamma_{1}^{H}, \gamma_{2}^{R}$ and γ_{2}^{H} at $x_{1}=0.93$.

\boldsymbol{x},	$\boldsymbol{P}_{\mathbf{1}}(\mathrm{mmHg})$	$\boldsymbol{P}_{\mathbf{2}}(\mathbf{m m H g})$
0.0	0.00	23.78
0.02	4.28	23.31
0.05	9.96	22.67
0.08	14.84	22.07
0.10	17.65	21.70
0.20	27.02	20.25
0.30	31.23	19.34
0.40	33.93	18.50
0.50	36.86	17.29
0.60	40.23	15.53
0.70	43.94	13.16
0.80	48.24	9.89
0.90	53.45	5.38
0.93	55.14	3.83
0.96	56.87	2.23
0.98	58.02	1.13
1.00	59.20	0.00

