Faculty of Engineering

Prince of Songkla Uni/ersity

Midtem Examination : Semester 2/2010(2553)	Academic Year 2010 (2553)
Date : December 24, 2010 (24 ธันวาคม 2553)	Time: 09:00-12:00
Subject: 225-515 Network Modeling	Room : S102

ทุจริตในการสอบ โทษขั้นต่ำ ปรับตกในวิชาที่ทุจริตนั้น และพักการเรียน 1 ภาครารศึกษา

1. Total 6 topics, 24 pages, and 100 scores.
2. Do your examination in these papers and return all them.
3. Write down your Name, Surname, and Student Code in every page.
4. Show all calculation and assumption.
5. All books, notes and calculators are allowed but you are not permitted to borrow anything form the others.

	Scores	Your Scores
1	21	
2	20	
3	22	
4	8	
5	9	
6	20	
Total	100	

\qquad

Surname \qquad

StudentCode. \qquad

Year. \qquad

Department. \qquad

Name. \qquad Surname \qquad Student Code

1. From figure 1.1 ,the number between each node is time (hours). For example, time travels between node (5) and node (7) is 11 hours.

Figure 1.1

Use Network techniques to find
1.1 The shortest path level 1 and 2 between node (1) anc node (9). What are the paths ?
(9 scores)
1.2 The longest path level 1 and 2 between node (1) anc node (9). What are the paths ? (12 scores)

Name \qquad Surname \qquad Student Code \qquad
2. From figure 2.1 ,the number between each node is the distance (miles). For example , the distance between node (1) and node (2) is 1 mile.

Figure 2.1

Use Dijkstra's Algorithm to find
2.1 The shortest path form node (1) to all nodes. What are the paths for each pair? (7 scores)
2.2 The longest path form node (1) to all nodes. What are the paths for each pair? (13 scores)

Name

\qquad Surname \qquad Student Code.
3. From Figure 3.1 , the number between each node $i: 3$ the reliability. For example, the reliability between node (2) and node (4) is 0.97

Figure 3.1
3.1 Use Dijkstra's Algorithm to find the maximum reliabili y and the paths.
3.1.1 Between node
(1) and (9)
(9 scores)
3.1.2 Between node (4) and (9)
(4 scores)
3.2 Use Shortest Path technique to find the total reliabilit! ' and the paths.
3.2.1 Between node (1) and node (5) (9 scores)

Name.
Surname
4. Use labeling procedure.

From Figure 4.1 , find the maximum flow between node (1) and node (10) . (8 scores)

Figure 4.1

Remark the meaning of numbers in each node is capaci.y flow

\qquad Surname. \qquad Student Code.

Name.
Surname \qquad Student Code.
5. Use linear programming formulates the objective function and constraints to find the maximum flow between node (1) and node (9) in inure 5.1

Do not calculate to solve the problem

Figure 5.1

Remark : The meaning of numbers in each node is cap city flow

Name. \qquad .Surname \qquad .Student Code \qquad
6. Mr. Taksin plans to deposit 60,000 million baht in the British Virgin bank for 1 year. The British Virgin bank pays the interests by there methods.

1. Deposits every three months, the interest is 2.15% per three months.
2. Deposits every six months for , the interest is 4.60% per six months.
3. Deposits every twelve months, the interest is $8.1 i \%$ per twelve months If Mr. Taksin does not follow the rule from methods 1 to 3 , he cannot get the interest.

Form method 1 to 3 or you combine all the methods. Use Shortest Path to find the maximum interest. How much will he get at the end of the yea?

Suggestion : You use the decimal at least 6 digits

