Prince of Songkla University

Faculty of Engineering

Midterm Examination: Semester $2 \quad$ Academic Year: 2010
Date: December 18, 2010
Time: 9:00-12:00 am
Subject: 226-403 Particulate Material Technology Room: A401

ทุจริติในการสอบ โโษัั้นต่ำปรับตกใหรายวิชาหั้แและพักการเรียห 1 ภาคการศึกษา

Name \qquad Surname \qquad .Student ID.

Instruction:

1. There are $\mathbf{2}$ parts, $\mathbf{2 0}$ questions, 11 paces; $\mathbf{1 2 0}$ points
2. Attempt all questions.
3. Only a hand-written note on two-sided A4 and a dictionary are allowed.
4. Borrowing things form other students is; prohibited.

Napisporn Memongkol Instructor

Some important equations

$$
\mathrm{D}_{\mathrm{A}}=(4 \mathrm{~A} / \pi)^{1 / 2} \quad \mathrm{D}_{\mathrm{V}}=(6 \mathrm{~V} / \pi)^{1 / 3} \quad \mathrm{D}_{\mathrm{S}}=(\mathrm{S} / \pi)^{1 / 2}
$$

$A=$ projected area, $V=$ volume, $S=$ surface area, $D_{A}:=$ equivalent spherical projected diameter, $D_{V}=$ equivalent spherical volume diameter, $D_{s}=$ equivalent spherical surface diameter

$$
\sigma=\sqrt{\frac{2 E r}{D}} \quad \mathrm{t}=\mathrm{Cd}^{2} / \mathrm{N}^{1 / 2}
$$

$\sigma=$ impact stress require to fracture a brittle material, $\mathrm{E}=$ elastic modulus,
$r=$ defect or existing crack tip radius, $D=$ particle size, $t=$ grinding time,
$C=$ empirical constant depends on the process and desired level,
$d=$ the grinding media, $N=$ rotational speed

$$
V=H / t=g D^{2}\left(\rho_{m}-\rho_{f}\right) /(18 \eta)
$$

$V=$ terminal velocity, $H=$ settling height, $t=$ settling time,$D=$ particle size, $\mathrm{g}=$ acceleration (gravitational constant, $9.8 \mathrm{~m} / \mathrm{s}^{2}$) $\rho_{\mathrm{m}}=$ particle density,
$\rho_{f}=$ density of the fluid, η = fluid viscosity

$$
K=P_{H_{2} \mathrm{O}} / P_{\mathrm{H}_{2}} \quad \mathrm{~J}=\mathrm{A} \exp (-\mathrm{Q} / \mathrm{RT})
$$

$K=$ the equilibrium constant, $P_{\text {H2 }}=$ the partial pressuris of hydrogen,
$P_{\text {H2O }}=$ the partial pressure of water, $J=$ reaction rate, $A=$ material constant, $R=$ gas constant, $T=$ absolute temperature

$$
D=\left(\frac{A}{\omega}\right) \sqrt{\frac{\gamma}{\rho_{m} R}} \quad \mathrm{C}_{\mathrm{R}}=\mathrm{V}_{\mathrm{L}} N_{\mathrm{C}}=\rho_{\mathrm{G}} / \rho_{\mathrm{A}}
$$

A = a process dependent constant, $\omega=$ angular velocity, $\gamma=$ surface energy of the melt, $\rho_{m}=$ density of the melt, $R=$ radius of the electrode

PART I: Fill in the blank using the letter ($\mathrm{a}-\mathrm{jj}$) provided in the next page that is related to the questions (2 point each) 10 points

1. "a finely divided solid, smaller than $1 \mathbf{m m}$ in its maximum dimension" is a definition of \qquad
2. The three main reasons for using powder metall argy are a) \qquad b) \qquad and c) \qquad
3. One of the best tools available for observing the discrete characteristics of metal powders is \qquad
4. For a cubic particle with a size of $1 \mu \mathrm{~m}$ as measured on each edge, determine the equivalent spherical diameters.
4.1) The equivalent spherical projected diametel $D_{A}=$ \qquad
4.2) The equivalent spherical volume diameter $\left[D_{V}=\right.$ \qquad
4.3) The equivalent spherical surface diameter $D_{S}=$ \qquad
5. The buoyancy force or $\left(F_{B}\right)$ is determined by \qquad
6. The equation " $D=0.9 \lambda / B \cos (\theta)$ " using in \times-ray technique that applied to size analysis of very small particles. What is " B "? \qquad
7. The weight distribution is skewed to the \qquad particle sizes in comparison to the population based distribution.
8. The two most important factors in gas atomization that affect the particle size are
\qquad and \qquad
9. The two outstanding differences between gas atomization and water atomization are \qquad and \qquad

Answers for PART I
a) shaping
b) $1.18 \mu \mathrm{~m}$
c) economic
d) energy saving
e) smaller
f) $1.27 \mu \mathrm{~m}$
g) particle size
h) TEM
i) $1.24 \mu \mathrm{~m}$
j) gas type
k) apparent density
I) coarser
m) dispersant
n) melt superheat
o) fluid velocity
p) captive
q) $g \rho_{m} \pi D^{3 / 6}$
r) $3 \pi \mathrm{DV} \eta$
s) $1.48 \mu \mathrm{~m}$
t) diffraction angle
u) powder

v) maximum intensity	w) SEM	x)	intensity
y) surface contamination	z) $g \rho_{\mathrm{f}} \pi \mathrm{D}^{3} / 6$	aa)	atmosphere
bb) nozzle geometry	cc) $1.38 \mu \mathrm{~m}$	dd) light microscope	
ee) $1.13 \mu \mathrm{~m}$	ff) peak broadering	gg)	powder shape
hh) gas velocity on exit	ii) unique	jj) compaction	

PART II: Answer all the questions

1. (4 points) The applications for PM components fall into two main groups. The first group is
\qquad
and the second group is
\qquad
2. (6 points) The PM industry divided into three groups, what are they?
a) \qquad
\qquad
b) \qquad
\qquad
c) \qquad
\qquad
3. (4 points) Comparison between shaping and compaction?
\qquad
\qquad
\qquad
\qquad
\qquad
4. (6 points) Give the meaning of these densities;

Pycnometer density
green density apparent density
5. (4 points) What is the meaning of debinding? Giv. two options of debinding in the PM processes?
\qquad
\qquad
\qquad
\qquad
6. (10 points) Three lots of bronze powders (rispresenting water atomized, gas atomized, and hydrogen reduced powders) are tested with the following results (theoretical density of bronze $=8.8 \mathrm{~g} / \mathrm{cm}^{3}$):

properties	Lot A	Lot B	Lot C
mean size, mm	48	25	40
apparent density, $\mathrm{g} / \mathrm{cm}^{3}$	2.8	1.7	4.4
tap density, ${\mathrm{g} / \mathrm{cm}^{3}} \quad 3.3$	2.4	4.7	
flow rate, s for 50 g	32	50	21
surface area, $\mathrm{m}^{2} / \mathrm{g}$	0.014	0.063	0.017

Identify which lot represents each of the powder fabrication techniques and justify your answer. (ผงแต่ละล็อต เป็นผงชนิดใด พร้อมเทตุผลสนับสนุน)

7. (8 points) A spherical nickel powder is analyzed for particle size using sedimentation. The powder is dispersed in water a: the top of a settling column 100 mm high. If the particle size is $8 \mu \mathrm{~m}$, then what is the expected settling time? (Ni density $=8.9 \mathrm{~g} / \mathrm{cm}^{3}$, water density $=1 \mathrm{~g} / \mathrm{cm}^{3}$, water viscosity $=10^{-3} \mathrm{~kg} / \mathrm{m} . \mathrm{s}$) (เวลาที่ใช้ในการตกตะกอน)
8. (8 points) Iron powder is screened into $-100 /+2(0)$ mesh and -325 mesh fractions. The apparent density of the coarse fraction is $2.6 \mathrm{~g} / \mathrm{cm}^{3}$ and the fine fraction has an apparent density of $2.3 \mathrm{~g} / \mathrm{cm}^{3}$. When a blend is frepared using 20% fine particles in the coarse fraction, the apparent density is me:asured as $2.8 \mathrm{~g} / \mathrm{cm}^{3}$. Explain the effect. (อธิบายผลที่เกิตขึ้นว่าทำไมเป็นเช่นนั้น)
9. (10 points) The green density for a stainless stecl powder is to be $6.5 \mathrm{~g} / \mathrm{cm}^{3}$. The apparent density is $2.7 \mathrm{~g} / \mathrm{cm}^{3}$; what is the compression ratio $\left(C_{R}\right)$ and what is the required powder fill for a final compact height of 4 sm ? (ความสูงตอนแรกเท่าไหร่)
10. (10 points) A 1 mm particle requires approximately 4 s to solidify in a low pressure gas atomizer and travels 10 m during this soliclification time. What would be the travel distance before solidification for a $100 \mu \mathrm{~m}$ particle produced under the same atomization conditions?
\qquad

11. (20 points) Data are collected by screening for a copper powder (theoretical density of copper $=8.9 \mathrm{~g} / \mathrm{cm}^{3}$) as follow:

mesh size	Weight, 1
-325	0
$+325 /-270$	3
$+270 /-230$	16
$+230 /-200$	43
$+200 /-170$	56
$+170 /-140$	35
$+140 /-120$	29
$+120 /-100$	15
$+100 /-80$	4
+80	0

a) (10 points) Complete the table (calculate for particle size, weight percent, population, population percent, cumulative wsight percent finer, and cumulative population percent finer)
b) (6 points) Plot the graphs of particle size di:stribution on page 11 (last page of this exam) showing the cumulative percent finer (both weight and population) versus the $\log _{10}$ of the particle size.
c) (2 points) What is the mean particle size on a weight basis?
d) (2 points) Estimate the mean particle size on a population basis.

Table (Standard sieve sizes)

mesh size	Opening, $\mu \mathrm{m}$	mesh size	Opening, $\mu \mathrm{m}$
35	500	140	106
40	425	170	90
45	355	200	75
50	300	290	63
60	250	270	53
70	212	325	45
80	180	$4 c 0$	38
100	150	$4 £ 0$	32
120	125	$5(10$	25

\qquad Page 8 of 11

สูดรที่กำหนดให้ $\quad \mathrm{n}=\frac{6 \mathrm{~W}}{\rho_{\mathrm{m}} \pi \mathrm{D}^{3}}$

Table for particle size distribution data

size $(\mu \mathrm{m})$	Weight (g)	\% wt	weight cumulative \% finer	pop دlation	\% pop	Population Cumulative \% finer
	0					
	3					
	43	$1=$				$4=$
	56					
	35					
	29					
	4					

*Show your calculation on the next page

หมายเหตุ ให้แสดงวิธีการคำนวณเฉพาะค่าที่อยู่ในช่องหมายเลข $1,2,3,4$ และ 5 ส่วนค่าอื่นๆ ไม่ต้องแสดงการคำนวณให้นำค่าที่คำนวณได้มาใส่ได้เลย

From your plot, Answer these questions

c) The mean particle size of Cu on a weight basis = \qquad $\mu \mathrm{m}$
d) The mean particle size of Cu on a population basis = \qquad $\mu \mathrm{m}$

Cumulative particle size distribution

Show your calculation here

No. 1

No. 2

No. 3

No. 4

No. 5

