Name : \qquad Student ID \# : \qquad

> คณะวิศวกรรมศาสตร์
> มหาวิทยาลัยสงขลานคริห ทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ ๒ วันจันทร์ที่ ๒๗ ธันวาคม พ.ศ. ๒สส์ต วิชา ๒๑๔-๓๒๔/๒๑๖-ต๒๔ : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา ๒๔ส์ต
เวลา ๙.00-๑๒.00 น. ห้องสอบ A205 / A401

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

คำสั่ง
๑. ข้อสอบมีทั้งหมด «ข้อ ให้ทำลงในข้อสอบทุกข้อ
๒. อนุญาตให้ใช้เครื่องคิคเลขได้
๓. ให้ใช้เครื่องมือเขียนแบบได้
๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. รวุธ วิสุทธิ์เมธางกูร
ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
๑	๒๐	
๒	๒๐	
๓	๒๐	
๔	๒๐	
๔	๒०	
รวม	๑๐๐	

Name : \qquad
\qquad

1) Answer the following questions
(a) What is the mobility of this mechanism?

(b) How many ternary links (links with 3 joints) does the mernanism in (a) have ?
2) (c) Is the following mechanisms an oscillating mechanism or a reciprocating mechanism ?

3)

(d) Select the correct name for each of the mechanisms from the following list :

Crank-rocker, Ratchet, Geneva, Scotch Yoke, Faucellier.

Name : \qquad
\qquad

\qquad
\qquad

(e) How many inversions does this mechanism have, inclt ding the one shown? \qquad

(f) Determine the mobility of this mechanism.

Name \qquad
\qquad
2) A six bar quick return mechanism is as shown in the figure.
(a) Draw its both limit positions (where the slider is at its leftmost and rightmost position).
(b) What is the stroke of this mechanism? \qquad
(c) If link 2 is rotating with a constant speed, which direction inust ω_{2} be so that this mechanism is a quick-return ?
(d) Determine the time ratio between the advance stroke and the return stroke.

77717771777777717171717171717171771771777711

(P) $_{74}^{D_{4}}$
\qquad
\qquad
3) The figure shows the mechanism used in a two-cylinder $60^{\circ} \mathrm{V}$ engine. If crank 2 rotates with an angular velocity of $3 \mathrm{rad} / \mathrm{s}$ clockwise. Find the velocities of points B, and D, and the angular velocities of links 3 and 5. $R_{A O 2}=20 \mathrm{~mm}, R_{A B}=R_{B C}=60 \mathrm{~mm}, R_{A C}=20 \mathrm{~mm}, R_{C D}=50 \mathrm{~mm}$.

Scale $1 \mathrm{~mm}: 1 \mathrm{~mm} / \mathrm{s}$

0v

Name : \qquad Student ID \# : \qquad
4) For the mechanism shown, link 4 has a velocity of $50 \mathrm{~mm} / \mathrm{s}$ to the right. Draw the velocity polygon of this mechanism and determine the velocity of point B and the angular velocity of link 3 .

0^{+}

$$
\text { Scale } 1 \mathrm{~mm}: 1 \mathrm{~mm} / \mathrm{s}
$$

Name : \qquad
\qquad
5) The mechanisms shown has a rolling contact between links 1 and 2 at point A. At the contact point B between links 2 and 3 is a sliding contact.
(a) How many poles (instantaneous center of velocities) does this mechanism have? (2 points)
(b) Locate all the poles of this mechanism at this position. (10 points)
(c) If point C of link 2 has a velocity of $50 \mathrm{~mm} / \mathrm{s}$ to the left, determine velocity of link 5 using the locations of the poles P_{12} and P_{25}. (8 points)

