\qquad
\qquad

> คณะวิศวกรรมศาสต:

มหาวิทยาลัยสงขดานครินทร์

วันจันทร์ท ทธ ธันวาคม พ.ศ. ซอยสา
วิขา bob-axam แนะนำกลไก

ประำปีการดดกษา beden
เวดา ๙.00-ab.00 น.
ห้องสอบ $\$ 203$

ศำแั่
๑. ข้อสอนมีทั้งหมด ๔ ข้อ ให้ห่าจงในข้อสอบทกข้อ
m. อนขาดให้ไช่เครื่องคิดเดขไต้
๓. ให้ไ้เกรื้องมื่อเขียนแบบได้

๔ไม่อนุมาตเอกตารออ่น ๆ
รศ.ตร. ารวรู วิฮุตธิ์เมตางทูร
ผ้้ะ อกข้อผอบ

ข้อ	คะแหนแก็ม	ไ\%
-	bo	
b	bo	
の	bo	
α	bo	
<	bo	
รวม	900	

\qquad
\qquad

1) Answer the following questions

(a) What is the mobility of this mechanism?

(b) How many temary links (links with 3 joints) does the mechanism in (a) have ? \qquad
(c) Is the following mechanisms an oscillating mechanism or a reciprocating mechanism ?

(d) Select the correct name for each of the mechanisms froin the following list :

Crank-rocker, Ratchet, Geneva, Scotch Yoke, Pelucellier.

\qquad
\qquad

\qquad

(e) How many inversions does this mechanism have, including the one shown? \qquad

(f) Determine the mobility of this mechanism.

\qquad
\qquad
2) The 6-bar quick return mechanism is shown at its both limit prositions.
(a) What is the stroke of this mechanism? \qquad
(b) If link 2 is rotating with a constant speed, which direction must ω_{2} be so that this mechanism is a quick-return?
(c) Determine the time ratio between the advance stroke and the return stroke.

(d) Draw this mechanism when link 2 is 90° from the horizontal axis.

\qquad
3) For the mechanism shown if link 4 is rotating with an angular velocity of $2 \mathrm{rad} / \mathrm{s}$ clockwise. Determine the velocity of point D, and the angular velocity of links 2, 3 zind 5 .

$0 v+$
Scale $1 \mathrm{~mm}: 1 \mathrm{~mm} / \mathrm{s}$
\qquad
\qquad
4) The four bar linkage shown has link 4 moving to the left with a constant speed $V_{B}=50 \mathrm{~mm} / \mathrm{s}$. The velocity vector polygon is given as shown. Determine the angular velocity of link 2 and the velocity of point C.

\qquad
\qquad
5) The mechanism shown has a rolling contact between link 2 and link 1 at A. The contact at B is a sliding contact. If link 2 is rolling with an angular velocity of $2 \mathrm{rad} / \mathrm{s}$ clockwise, determine the angular velocity of link 3.

Scale $1 \mathrm{~mm}: 1 \mathrm{~mm} / \mathrm{s}$

$\mathrm{Ov}+$

