Prince of Songkla University

Faculty of Engineering

Midterm Examination: Semester 2
Date: December 27, 2010
Subject: 237-510 Powder Metallurgy

Academic Year: 2010
Time: 9:00-12:00
Room: A301

ทุจริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้น.เละพักการเรียน 1 กาคการศึกษา

Name Surname \qquad Student ID.

Instruction:

1. There are 2 parts, 27 questions, 12 pages; 110 points
2. Attempt all questions.
3. Only a hand-written note on two-sided A4, calculator, and a dictionary are allowed.
4. Borrowing things form other students is prohibited.

Napisporn Memongkol
Instructor

Some important equations

$$
\mathrm{D}_{\mathrm{A}}=(4 \mathrm{~A} / \pi)^{1 / 2} \quad \mathrm{D}_{\mathrm{v}}=(6 \mathrm{~V} / \pi)^{1 / 3} \quad \mathrm{D}_{\mathrm{S}}=(\mathrm{S} / \pi)^{1 / 2}
$$

$A=$ projected area, $V=$ volume, $S=$ surface area, $D_{A}:=$ equivalent spherical projected diameter, $D_{V}=$ equivalent spherical volume diameter, $\left[/_{s}=\right.$ equivalent spherical surface diameter

$$
\sigma=\sqrt{\frac{2 E r}{D}} \quad \mathrm{t}=\mathrm{Cd}^{2} /: \mathrm{v}^{1 / 2}
$$

$\sigma=$ impact stress require to fracture a brittle material, $\mathrm{E}=$ elastic modulus, $r=$ defect or existing crack tip radius, $\mathrm{D}=$ particle size, $\mathrm{t}=$ grinding time, $C=$ empirical constant depends on the process and desired level,
$\mathrm{d}=$ the grinding media, $\mathrm{N}=$ rotational speed

$$
\mathrm{V}=\mathrm{H} / \mathrm{t}=\mathrm{g} \mathrm{D}^{2}\left(\rho_{\mathrm{m}}-\rho_{\mathrm{f}}\right) /(18 \eta)
$$

$\mathrm{V}=$ terminal velocity, $\mathrm{H}=$ settling height, $\mathrm{t}=$ settling tinie, $\mathrm{D}=$ particle size, $\mathrm{g}=$ acceleration (gravitational constant, $9.8 \mathrm{~m} / \mathrm{s}^{2}$) $\rho_{\mathrm{m}}=$ particle density,
$\rho_{f}=$ density of the fluid, $\eta=$ fluid viscosity

$$
K=P_{H_{2} \mathrm{O}} / P_{\mathrm{H}_{2}} \quad \mathrm{~J}=\mathrm{A} \exp (-\mathrm{Q} / \mathrm{RT})
$$

$K=$ the equilibrium constant, $P_{H 2}=$ the partial pressure of hydrogen,
$P_{H 2 O}=$ the partial pressure of water, $J=$ reaction rate, $A=$ material constant, $R=$ gas constant, $T=$ absolute temperature

$$
D=\left(\frac{A}{\omega}\right) \sqrt{\frac{\gamma}{\rho_{m} R}} \quad \mathrm{C}_{\mathrm{R}}=\mathrm{v}_{\mathrm{L}} \wedge_{\mathrm{C}}^{\prime}=\rho_{\mathrm{G}} / \rho_{\mathrm{A}}
$$

$A=a \operatorname{process}$ dependent constant, $\omega=$ angular veloci. $y, \gamma=$ surface energy of the melt, $\rho_{m}=$ density of the melt, $R=$ radius of the electrcide

PART I: Fill in the blank using the letter (a-ss) provided in the next page that is related to the questions (2 point each) 40 points

1. "A finely divided solid, smaller than 1 mm in its maximum dimension" is a definition of \qquad
2. The three main reasons for using powder metallurgy are a) \qquad b) \qquad and c) \qquad
3. One of the best tools available for observing the discrete characteristics of metal powders is \qquad
4. For a cubic particle with a size of $1 \mu \mathrm{~m}$ as measured on each edge, determine the equivalent spherical diameters.
4.1) The equivalent spherical projected diameter $J_{A}=$ \qquad
4.2) The equivalent spherical volume diameter $D_{\backslash^{\prime}} \quad=\ldots \ldots \ldots \ldots \mu \mathrm{m}$
4.3) The equivalent spherical surface diameter $D_{: ~} \quad=\ldots \ldots \ldots \ldots . \mu m$
5. The buoyancy force or $\left(F_{B}\right)$ is determined by
6. From the equation " $D=0.9 \lambda / B \cos (\theta)$ " using in X-ray technique that applied to size analysis of very small particles. What is "Ei"?
7. In particle size analysis, the weight based distribution is skewed to the particle sizes in comparison to the population based distribution.
8. The two most important factors in gas atomization that affect the particle size are
\qquad and \qquad
9. The two outstanding differences between gas ato nization and water atomization are \qquad and \qquad
10. Particle size analysis by \qquad uses a predetermined settling height and places a dispersed powder at the top of the tube.
11. In electrical zone sensing, dispersed particles in the electrolyte are carried by the fluid flow into the \qquad and cause a decrease in conductivity.
12. The screening technique is usually applied only tc particles larger than \qquad $\mu \mathrm{m}$
13. The most straightforward descriptor of particle shape is the \qquad defined as the maximum particle dimension divided by the minimum particle dimension.
14. \qquad measures the ability to densify a powcler under an applied load

Answers for PART I

a) shaping
b) 1.18
c) economic
d) energy saving
e) smaller
f) 1.27
g) particle size
h) TEM
j) gas type
k) apparent density
m) dispersant
n) compressibility'
i) $\quad 1.24$
p) captive
q) $\quad \mathrm{g} \rho_{\mathrm{m}} \pi \mathrm{D}^{3} / 6$
l) coarser
t) Light blockin!
r) $3 \pi \mathrm{DVV}$
s) 1.48
w) 38
y) surface contamination
bb) nozzle geometry
z) $g \rho_{f} \pi D^{3} / 6$
x) intensity
v) maximum intensity
ee) 1.13
cc) 1.38
aa) atmosphere
ff) peak broadening
hh) gas velocity on exit
kk) sedimentation
ii) unique
nn) 45
II) Light scattering
qq) aspect ratio
oo) SEM
rr) sample chamber
dd) 25
gg) powder shape
ji) aperture mm) diffraction angle
pp) light microscope
ss) melt superheat

PART II: Answer all the questions

1. (2 points) The applications for PM components fall into two main groups. The first group is \qquad
and the second group is \qquad
2. (3 points) The PM industry divided into three groups, what are they?
a) \qquad
b) \qquad
\square
c) \qquad
\qquad
3. (2 points) Comparison between shaping and comjaction?
\qquad
\qquad
\qquad
\qquad
\qquad
4. (2 points) Comparison between Hall flowmeter and Scott volumemeter?
\qquad
\qquad
\qquad
\qquad
\qquad
5. (5 points) Give the meaning of these densities;

Pycnometer density
green density
apparent density
sintered density
tap density
6. (3 points) What is the meaning of debinding? Give two options of debinding in the PM processes?
\qquad
\qquad
\qquad
\qquad
7. (3 points) How might mixed particles of copper and tin be separated from one another?
\qquad
\qquad
\qquad
8. (10 points) Two different tungsten powders (theoretical density $=19.3 \mathrm{~g} / \mathrm{cm}^{3}$) are analyzed for particle size using a streaming technique and found to have an equivalent mean size of $5 \mu \mathrm{~m}$. However, the other properties are quite different as noted below:

	Powder \boldsymbol{A}	Powder B
Specific surface $\mathbf{a r e a}, \mathbf{m}^{2} / \mathbf{g}$	0.26	0.12
Apparent density, $\mathbf{g} / \mathbf{c m}^{\mathbf{3}}$	2.3	4.5
Tap density, $\mathbf{~} / \mathbf{c m}^{\mathbf{3}}$	4.6	8.1

a) Explain why there might be a difference in surfiace areas.
b) What equivalent spherical diameter would give the same surface areas for each powder?
c) What differences might explain the packing properties?
d) What additional information would be useful?
9. (5 points) A spherical nickel powder is analyzed for particle size using sedimentation. The powder is dispersed in water at the top of a settling column 100 mm high. If the settling time of this powder is 6 minutes then what is the particle size of this powder? (ให้คำนวณหาขนาดอนุภาค)
(Ni density $=8.9 \mathrm{~g} / \mathrm{cm}^{3}$, water density $=1 \mathrm{~g} / \mathrm{cm}^{3}$, water viscosity $=10^{-3} \mathrm{~kg} / \mathrm{m} . \mathrm{s}$)
10. (5 points) Iron powder is screened into $-100 /+20$ () mesh and -325 mesh fractions. The apparent density of the coarse fraction is $2.6!3 / \mathrm{cm}^{3}$ and the fine fraction has an apparent density of $2.3 \mathrm{~g} / \mathrm{cm}^{3}$. When a blend is prepared using 20% fine particles in the coarse fraction, the apparent density is measured as $2.8 \mathrm{~g} / \mathrm{cm}^{3}$. Explain the effect. (อธิบายผลที่เกิดขึ้นว่าทำไมเป็นเช่นนั้น)
11. (5 points) A solid loading of 65 vol. $\%$ is sought from a powder mixture composed of 98% iron powder and 2% nickel. The binder has a density of $0.95 \mathrm{~g} / \mathrm{cm}^{3}$. What weight is required for Fe, Ni, and binder for the ferdstock? (ให้คำนวณหาน้ำหนักของ ผงเหล็ก ผงนิกเกิล และสารยึด)
12. (5 points) The green density for a copper powder is to be $6.5 \mathrm{~g} / \mathrm{cm}^{3}$. The apparent density is $2.7 \mathrm{~g} / \mathrm{cm}^{3}$; what is the compression atio $\left(C_{R}\right)$ and what is the final compact height for a powder fill height of 10 cm ? (ให้คำนวณหา C_{R} และ ความสูงหลัง การอัด)
13. (20 points) Data are collected by screening for a nickel powder (theoretical density of nickel $=8.9 \mathrm{~g} / \mathrm{cm}^{3}$) as follow:

mesh size	Weight,__
-325	0
$+325 /-270$	6
$+270 /-230$	14
$+230 /-200$	43
$+200 /-170$	56
$+170 /-140$	39
$+140 /-120$	28
$+120 /-100$	12
$+100 /-80$	4
+80	0

a) (10 points) Complete the table (calculate for particle size, weight percent, cumulative weight percent finer, and cumulative weight percent larger)
b) (6 points) Plot the graphs of particle size distribution on page 11 (last page of this exam) showing the cumulative weight percent finer and cumulative population percent finer versus the $\log _{10}$ of th \rightleftharpoons particle size.
c) (2 points) What is the mean particle size on a weight basis?
d) (2 points) Estimate the mean particle size on a population basis.

Table (Standard sieve siz:es)

mesh size	Opening, $\mu \mathrm{m}$	mesh size	Opening, $\mu \mathrm{m}$
35	500	140	106
40	425	170	90
45	355	200	75
50	300	230	63
60	250	270	53
70	212	325	45
80	180	400	38
100	150	450	32
120	125	500	25

สูตรที่กำหนตให้ $\quad \mathrm{n}=\frac{6 \mathrm{~W}}{\rho_{\mathrm{m}} \pi \mathrm{D}^{3}}$

Table for particle size distribution data

size $(\mu \mathrm{m})$	Weight (g)	\% wt	weight cumulative \% finer	popllation	\% pop	Population Cumulative \% finer
	0					
	6					
	14	$\mathbf{1 =}$	2=	3=	$\mathbf{4 =}$	$\mathbf{5 =}$
	43					
	56					
	39					
	28					
	12					
	4					
	0					

*Show your calculation on the next page

หมายเหต ให้แสดงวิธีการคำนวณเฉพาะค่าของตัวเลขที่อยุ่ในช่องหมายเลข $1,2,3,4$ และ 5 ในหน้าถัดไป (หน้า 11) ส่วนค่าดัวเลขอื่นๆ ไม่ต้องแสดงการคำนวณให้นำค่าที่คำนวณได้มาใส่ ได้เลย

From your plot, Answer these two questions

c) The mean particle size of Ni on a weight basis = \qquad $\mu \mathrm{m}$
d) The mean particle size of Ni on a population basis = μm

Show your calculation here
No. 1

No. 2

No. 3

No. 4

No. 5

Cumulative particle size distribution

\qquad Page 12 of 12

