PRINCE OF SONGKLA UNIVERSITY
FACULTY OF ENGINEERING

| Final Exam | $:$ Semester II | Academic Year | $: 2010$ |
| :--- | :--- | :--- | :--- |
| Date | $:$ February 26, 2011 | Time | $: 13: 30-16: 30$ |
|  |  |  | $:$ S817 |
| Subject | $:$ Unit Operations I (230-323) | Room |  |

Name Student ID $\qquad$

## หมายเหตุ

1. ข้อสอบมีทั้งหมด 3 ข้อ ในกระดาษคำถาม 7 หน้า
2. ห้ามการหยิบยืมสิ่งใด ๆ ทั้งสิ้น จากผู้อื่น 7 เว้นแต่ผู้คุมสอบจะหยิบยืมให้
3. ห้ามนำส่วนใดสวนหนึ่งของข้อสอบออกจากห้องสอบ
4. ผู้ที่ป่ระสงค์จะออกจากห้องสอบก่อนหมดเวลาสอบ แต่ต้องไม่น้อยกว่า 30 นาที ให้ยกมือขอ อนุญาตจากผู้คุมสอบก่อนจะลุกจากที่นั่ง
5. เมื่อหมดเวลาสอบ ผู้เข้าสอบต้องหยุดการเขียนใด ๆ ทั้งสิ้น
6. ผู้ที่ปฏิบัติเข้าข่ายทุจริตในการสอบ ตามประกาศคณะวิศวกรรมศาสตร์ มีโทษ คือ ปรับตกใใน รายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา
7. ให้นักศึกษาสามารถนำสิ่งต่อไปนี้เข้าห้องสอบได้
[ 7 ต ตำรา
[ป) เครื่องคิดเลข
( พจนานุกรม
$\square$
อื่น $ๆ$ (เอกสารทกๆนิด)
( หนังสือ
[7] กระดาษ $A 4$
8. ให้ทำข้อสอบโดยใช้
(7) ดินสอ


| Question \# | 1 | 2 | 3 | Total |
| :---: | :---: | :---: | :---: | :---: |
| Total Score | 20 | 25 | 20 | 65 |
| Score |  |  |  |  |

ดร.พรศิริ แก้วประดิษฐ์ ผู้ออกข้อสอบ
$\qquad$
$\qquad$

1. ( 20 points), A filter cake 0.6 m square and 0.05 m thick is dried with hot air at inlet temperature of $70^{\circ} \mathrm{C}$ and wet - bulb temperature of $26.7^{\circ} \mathrm{C}$. The air flow parallel with both sides of the cake. From the experimental results, drying rate plots with time (in hour) and with free moisture ( X ) are shown below,

1.1. ( 2 points), what is the lowest value of the initial free moisture content of the solid that causes no constant rate period?


[^0]1.2. (7 points), determine mass of dry-solid by using information obtained from the figures
1.3. (4 points), determine initial percentage of moisture in solid (dry basis) if equilibrium moisture content is 0.008 and determine moisture in kg if dry solid is 4 kg
1.4. (7 points), drying rate in a falling rate period is assumed proportional to the free moisture content, $\mathrm{R}=\mathrm{aX}$, estimate the value of a if the solid is dried from $15.5 \%$ to $4.5 \%$ moisture (dry basis) and equilibrium moisture content is 0.008
2. ( 25 points), Adsorption on BPL-carbon is used to treat an airstream containing 360 ppm of $n$-butanol at $25^{\circ} \mathrm{C}, 0.95 \mathrm{~atm}$. Molecular weight of n -butanol is $74.12 \mathrm{~g} / \mathrm{mol}$ and its density at $20^{\circ} \mathrm{C}$ is $0.81 \mathrm{~g} / \mathrm{cm}^{3}$.
2.1. (4 points), calculate density at its normal boiling point, $117.7^{\circ} \mathrm{C}$
2.2. ( 9 points), how much is gram of n-butnaol adsorbed on 1 gram of BPL-carbon, if vapor pressure of n -butanol at $25^{\circ} \mathrm{C}$ is 7 mmHg ?
2.3. ( 8 points), determine solute feed rate per unit area of BPL-carbon if a superficial velocity is $55 \mathrm{~cm} / \mathrm{s}$
2.4. ( 4 points), estimate ideal adsorption time for 10 cm bed length if bulk density is 0.45 $\mathrm{g} / \mathrm{cm}^{3}$
crystallizer. The solubility of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ at $80^{\circ} \mathrm{C}$ is $120 \mathrm{~g} / 100 \mathrm{~g}$ of free $\mathrm{H}_{2} \mathrm{O}$, and at $25^{\circ} \mathrm{C}$ is $40 \mathrm{~g} / 100 \mathrm{~g}$ of free $\mathrm{H}_{2} \mathrm{O}$. Molecular weight of $\mathrm{CuSO}_{4}$ is $159.61 \mathrm{~g} / \mathrm{mol}$.
3.1. ( 13 points), how much solution must be fed to produce 100 kg of crystals $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ ?
3.2. ( 7 points), what rate of production in $\mathrm{kg} / \mathrm{h} . \mathrm{m}^{3}$ is needed if rate of nucleation is $1.473 \times 10^{9}$ nuclei/h.m ${ }^{3}$, geometry constant (a) is 0.2 , the density of crystal is 2,300 $\mathrm{kg} / \mathrm{m}^{3}$ and designed crystal size is 1.4 mm ?


[^0]:    
    
    Mraculd be nthex m
    

