PRINCE OF SONGKLA UNIVERSITY

FACULTY OF ENGINEERING

Midterm Exam

: Semester I

Academic year

: 2011

Date

: August 7th, 2011

Time

: 9.00 – 12.00

Subject

: (231-321) Chemical Engineering Kinetic & Reaction Design I

Pages

: 7 (inc. front page)

Room

: ห้องหัวหุ่นยนต์

Name Student ID

หมายเหตุ

- 1. ข้อสอบมีทั้งหมด 5 ข้อ ในกระดาษคำถาม 7 หน้า (รวมปก)
- 2. ห้ามการหยิบยืมสิ่งใด ๆ ทั้งสิ้น จากผู้อื่น ๆ เว้นแต่ผู้คุมสอบจะหยิบยืมให้
- 3. ห้ามนำส่วนใดส่วนหนึ่งของข้อสอบออกจากห้องสอบ
- 4. ผู้ที่ประสงค์จะออกจากห้องสอบก่อนหมดเวลาสอบ **แต่ต้องไม่น้อยกว่า 30 นาที** ให้ยกมือขออนุญาตจากผู้ คุมสอบก่อนจะลุกจากที่นั่ง
- 5. เมื่อหมดเวลาสอบ ผู้เข้าสอบต้องหยุดการเขียนใด ๆ ทั้งสิ้น
- 6. ผู้ที่ปฏิบัติเข้าข่ายทุจริตในการสอบ ตามประกาศคณะวิศวกรรมศาสตร์ **มีโทษ คือ <u>ปรับตกในรายวิชาที่ทุจริต</u> และพักการเรียน 1 ภาคการศึกษา**
- 7. ให้นักศึกษาสามารถนำสิ่งต่อไปนี้เข้าห้องสอบได้

🗹 ตำรา

ชนังสือ

🗹 เครื่องคิดเลข

✓ กระดาษ A4

พจนานุกรม

อื่น ๆ (เอกสารทุกชนิด)

8. ให้ทำข้อสอบโดยใช้

🗹 ดินสค

ปากกา

Question #	1	2	3	4	5	Total
Total Score	10	30	20	15	10	85
Score						

ดร.พรศิริ แก้วประดิษฐ์ ผู้ออกข้อสอบ

Name	Student ID
101110	Otadont ID

(10 points) Combustion of methyl amine (CH₃NH₂) yields nitrogen monoxide (NO), carbon dioxide (CO₂) and water as show in the following reaction,

$$4CH_3NH_2(l) + 110_2(g) \rightarrow 4NO(g) + 10H_2O(g) + 4CO_2(g)$$

- 1.1. (7 points) Calculate the mass of water produced from the complete combustion of 55 g of $\mathrm{CH_3NH_2}$
- 1.2. (3 points) Calculate the mass of O_2 required for the combustion

Name	Student ID
------	------------

- 2. (30 points) The elementary reaction $A \to 2B$ in ideal gas phases occur under temperature 300 K. It is assumed that an initial concentration of A (C_{A0}) is 2 moles/liter (feed with pure A), a reaction rate constant (k) is 0.5 min⁻¹ and an initial volumetric flow rate of A (ϑ_{A0}) is 4 liters/min. If 90% conversion is required.
 - 2.1. (15 points) Determine the reactor volume of a continuous stirred tank reactor, CSTR
 - 2.2. (10 points) Determine the reactor volume of a plug flow reactor, PFR (by using numerical method)
 - 2.3. (5 points) Specify the proper type of reactor (between CSTR and PFR) in this case (explain)

Name S	Student ID
--------	------------

3. (20 points) Consider the gas-phase decomposition reaction,

$$A \rightarrow B + C + 2D$$

This reaction takes place in an isothermal batch reactor at constant total pressure. The rate equation for the reaction is $-r_A = \frac{kC_A}{(1+K_AC_A)}$. If $y_{A0} = 1$, $\frac{K_AP}{RT} = 1.5$ and k = 0.01 min⁻¹. How long will it take for the conversion to reach 50%? (by using analytical method)

4. (15 points) For a liquid elementary reaction in a continuous stirred tank reactor (CSTR),

$$A \overset{k_f}{\underset{k_b}{\leftarrow}} B$$

If $k_f=0.5~\text{min}^{-1}$, $k_b=0.1~\text{min}^{-1}$, the volumetric flow rate is 4 liters/min, an initial concentration of A and B, $C_{A0}=2~\text{and}~C_{B0}=0~\text{moles/liters}$ respectively.

- 4.1. (12 points) Considering rate of disappearance of A, is it possible to achieve 90% conversion (explain)
- 4.2. (3 points) Determine the maximum conversion obtainable for the reaction if equilibrium constant (K_p) is 5.0.

Name	Student ID
------	------------

5. (10 points) A gas phase reaction (A \rightarrow B) is carried out isothermally in a packed bed reactor (PBR) containing W kg of catalyst. The rate law is found to be $-\mathbf{r}_A' = \mathbf{k} P_A$ where P_A is a partial pressure of A. Express a function of conversion (X) in term of W by considering pressure drop in PBR.