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1 Short Questions [20 pts]
Are the following statements True/False? Explain your reasoning in only 1
sentence.

1. Density estimation (using say, the kernel density estimator) can be used to perform

classification.

The correspondence between logistic regression and Gaussian Naive Bayes (with iden-
tity class covariances) means that there is a one-to-one correspondence between the
parameters of the two classifiers.

. The training error of 1-NN classifier is 0.

As the number of data points grows to infinity, the MAP estimate approaches the MLE
estimate for all possible priors. In other words, given enough data, the choice of prior
is irrelevant.

. Cross validation can be used to select the number of iterations in boosting; this pro-

cedure may help reduce overfitting.

. The kernel density estimator is equivalent to performing kernel regression with the

value Y; = % at each point X; in the original data set.

We learn a classifier f by boosting weak learners h. The functional form of f’s decision
boundary is the same as h’s, but with different parameters. (e.g., if h was a linear
classifier, then f is also a linear classifier).



8. The depth of a learned decision tree can be larger than the number of training examples
used to create the tree.

For the following problems, circle the correct answers:

1. Consider the following data set:

O +
T O

Circle all of the classifiers that will achieve zero training error on this data set. (You
may circle more than one.)

(a) Logistic regression

(b) SVM (quadratic kernel)
(c) Depth-2 ID3 decision trees
(d) 3-NN classifier



2. For the following dataset, circle the classifier which has larger Leave-One-Out Cross-
validation error.

+ 4+ = =

+ + = =

a) 1-NN
b) 3-NN



2 Bayes Optimal Classification [15 pts]

In classification, the loss function we usually want to minimize is the 0/1 loss:

((f(z),y) = L{f(z) # v}

where f(z),y € {0,1} (i.e., binary classification). In this problem we will consider the effect
of using an asymmetric loss function:

las(f(2),y) = al{f(z) = 1,y = 0} + B1{f(z) = 0,y = 1}
Under this loss function, the two types of errors receive different weights, determined by

a,B > 0.

1. [4 pts] Determine the Bayes optimal classifier, i.e. the classifier that achieves minimum
risk assuming P(z,y) is known, for the loss ¢, g where a, 3 > 0.

2. [3 pts] Suppose that the class y = 0 is extremely uncommon (i.e., P(y = 0) is small).
This means that the classifier f(z) = 1 for all z will have good risk. We may try to
put the two classes on even footing by considering the risk:

R=P(f(z) = 1ly = 0) + P(f(x) = Oly = 1)

Show how this risk is equivalent to choosing a certain «, 8 and minimizing the risk
where the loss function is ¢, 3.



3. [4 pts] Consider the following classification problem. I first choose the label ¥ ~
Bernoulli(}), which is 1 with probability ;. If Y’ = 1, then X ~ Bernoulli(p); otherwise,
X ~ Bernoulli(g). Assume that p > g. What is the Bayes optimal classifier, and what

is its risk?

4. [4 pts] Now consider the regular 0/1 loss ¢, and assume that P(y =0) =P(y=1) =

1/2. Also, assume that the class-conditional densities are Gaussian with mean yo and
co-variance Y under class 0, and mean p; and co-variance ¥; under class 1. Further,
assume that pg = p.
For the following case, draw contours of the level sets of the class conditional densities
and label them with p(z|y = 0) and p(z|y = 1). Also, draw the decision boundaries
obtained using the Bayes optimal classifier in each case and indicate the regions where
the classifier will predict class 0 and where it will predict class 1.

10 40
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3 Logistic Regression [18 pts]

We consider here a discriminative approach for solving the classification problem illustrated
in Figure 1.

Figure 1: The 2-dimensional labeled training set, where ‘+’ corresponds to class y=1 and
‘O’ corresponds to class y = 0.

1. We attempt to solve the binary classification task depicted in Figure 1 with the simple
linear logistic regression model

1
1+ ezp(—wo — w1 T — WaZa)

P(y = 1|7, W) = g(wo + w121 + wazs) =

Notice that the training data can be separated with zero training error with a linear
separator.

Consider training regularized linear logistic regression models where we try to maximize
n
Zlog (P(yilms, wo, w1, wz)) — C’w;‘.’
i=1

for very large C. The regularization penalties used in penalized conditional log-
likelihood estimation are —Cw?, where j = {0,1,2}. In other words, only one of the
parameters is regularized in each case. Given the training data in Figure 1, how does
the training error change with regularization of each parameter w;? State whether the
training error increases or stays the same (zero) for each w; for very large C. Provide
a brief justification for each of your answers.



(a) By regularizing ws [2 pts]
(b) By regularizing w; [2 pts]
(c) By regularizing wg [2 ptsl

2. If we change the form of regularization to L1-norm (absolute value) and regularize w,
and wy only (but not wyp), we get the following penalized log-likelihood

Zlog P(yi|zi, wo, w1, wq) — C(|w1] + |wal).

=1

Consider again the problem in Figure 1 and the same linear logistic regression model
P(y = 1|7, W) = g(wo + w11 + waxs).

(a) [3 pts] As we increase the regularization parameter C which of the following
scenarios do you expect to observe? (Choose only one) Briefly explain your choice:
() First w; will become 0, then ws.
() First wy will become 0, then w;.

() wi and ws will become zero simultaneously.

()

None of the weights will become exactly zero, only smaller as C increases.



(b)

[3 pts] For very large C, with the same L1-norm regularization for w; and w, as
above, which value(s) do you expect wy to take? Explain briefly. (Note that the
number of points from each class is the same.) (You can give a range of values
for wy if you deem necessary).

[3 pts] Assume that we obtain more data points from the ‘+’ class that corre-
sponds to y=1 so that the class labels become unbalanced. Again for very large
C, with the same L1-norm regularization for w; and w, as above, which value(s)
do you expect wy to take? Explain briefly. (You can give a range of values for wy
if you deem necessary).
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4 Kernel regression [16 pts]

Now lets consider the non-parametric kernel regression setting. In this problem, you will
investigate univariate locally linear regression where the estimator is of the form:

~

f(z) = b1+ Baz

and the solution for parameter vector 3 = [8; (2] is obtained by minimizing the weighted
least square error:

K (%52)
Y K (57E)

where K is a kernel with bandwidth h. Observe that the weighted least squares error can
be expressed in matrix form as

J(51,52) - (Y - Aﬁ)TW(Y - Aﬂ),

J(Br,B2) = ZM(x)(K = — [32X¢)2 where Wi(z) =
i=1

where Y is a vector of n labels in the training example, W is a n x n diagonal matrix with
weight of each training example on the diagonal, and

1X,
1 X
A= ’
1 X,
1. [4 pts] Derive an expression in matrix form for the solution vector § that minimizes
the weighted least square.

2. [3 pts] When is the above solution unique?

3. [3 pts] If the solution is not unique, one approach is to optimize the objective function
J using gradient descent. Write the update equation for gradient descent in this case.
Note: Your answer must be expressed in terms of the matrices defined above.

11



4. [3 pts] Can you identify the signal plus noise model under which maximizing the
likelihood (MLE) corresponds to the weighted least squares formulation mentioned
above?

5. [3 pts] Why is the above setting non-parametric? Mention one advantage and one
disadvantage of nonparametric techniques over parametric techniques.

12



5 SVM [16 pts]
5.1 L2 SVM

Let {(xi,y:)}\_; be a set of [ training pairs of feature vectors and labels. We consider binary
classification, and assume y; € {—1,+1} Vi. The following is the primal formulation of L2
SVM, a variant of the standard SVM obtained by squaring the hinge loss:

!
1
min §WTW 4 % ; &

st w(wixg+b) > 1-&, ie{l,...,1},
& >0, ie{1,...,1}.

1. [4 pts] Show that removing the last set of constraints {§; > 0 Vi} does not change the
optimal solution to the primal problem.

2. [3 pts] After removing the last set of constraints, we get a simpler problem:

2
st w(wix;+b) > 1-§, ie{l,...,l}.

1 O <
. - T ~ 2
glll)lg Ww+2i§_;£z

Give the Lagrangian of (1).

3. [6 pts] Derive the dual of (1). How is it different from the dual of the standard SVM
with the hinge loss?
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5.2 Leave-one-out Error and Support Vectors

[3 pts] Consider the standard two-class SVM with the hinge loss. Argue that under a given
value of C,

#SVs

T
where [ is the size of the training data and #SVs is the number of support vectors obtained
by training SVM on the entire set of training data.

LOO error <
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6 Boosting [15 pts]

1. Consider training a boosting classifier using decision stumps on the following data set:

+ o+

(a) [3 pts] Which examples will have their weights increased at the end of the first
iteration? Circle them.

(b) [3 pts] How many iterations will it take to achieve zero training error? Explain.

(c) [3 pts] Can you add one more example to the training set so that boosting will
achieve zero training error in two steps? If not, explain why.

15



2. [2 pts] Why do we want to use “weak” learners when boosting?

3. [4 pts] Suppose AdaBoost is run on m training examples, and suppose on each round
that the weighted training error ¢; of the t"* weak hypothesis is at most 1/2 — v, for
some number v > 0. After how many iterations, 7', will the combined hypothesis H
be consistent with the m training examples, i.e., achieves zero training error? Your
answer should only be expressed in terms of m and v. (Hint: What is the training
error when 1 example is misclassified?)
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