PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Mid-term Examination: Semester 1

Date: August 7, 2011

Subject: 226-433 Industrial Automatic Control

Academic Year: 2011

Time: 9:00-12:00

Room: A401

Name	 ID	

Instruction

- 1. Attempt all 5 questions in this exam paper.
- 2. A <u>closed-book exam.</u>, No sheets or any materials is allowed.
- 3. A calculator is allowed.
- 4. The scores are summarized in following table.

Question	Full score	Assigned score
1	15	
2	15	
3	15	
4	15	
5	15	
Total	75	

Assoc. Prof. Somchai Chuchom

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

Page 1 of 11

226-433 Industrial Automatic Control

Name	 ID	
Ivallic	 . 10	

Question #1 (15 marks) Answer the following questions

1.1) (5 marks) What is the control system? Explain each of the control system elements.

1.2) (5 marks) What are the advantages and limitations of the open-loop control systems? Give examples of at least 2 open-loop control systems – explain their concepts and components involved.

Name	 	 	ID	

1.3) (5 marks) Consider the Machining Center (MC) located in the CAD/CAM laboratory of IE department. What sub-systems of the MC are the automatic control systems? Why? For each sub-system, specify the suitable actuators and sensors.

Name ID

Question #2 (15 marks)

A laser printer uses a laser beam to print copy rapidly for a computer. The laser is positioned by a control input, r(t), so that we have

$$Y(s) = \frac{5(s+100)}{s^2+60s+500}R(s).$$

The input r(t) represents the desired position of the laser beam.

- 2.1 If r(t) is a unit step input, find the output y(t).
- 2.2 What is the final value of y(t)?

Name	 	 ID	

07

Question #3 (15 marks)

A system is shown in Figure 1(a).

- 3.1 Determine G(s) and H(s) of the block diagram shown in figure 1 (b) that are equivalent to those of the block diagram of Figure 1(a).
- 3.2 Determine Y(s)/R(s) for Figure 1(b).

Figure 1

Name ID	
---------	--

Question #4 (15 marks)

4.1) (7 marks) Simplify the following block diagrams below.

4.2) (8 marks) Find the Transfer function, $G(s) = X_2(s)/F(s)$, for the translational mechanical system shown below.

Mama	 ID	
Ivallie	 IU	

Question #5 (15 marks)

Solve the differential equation below, assume zero initial conditions. Also show the Transfer function, poles and zeros of the mathematical model.

$$\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 15x = 7u(t)$$

- 5.1) Using classical methods.
- 5.2) Using Laplace transforms.

Name 1D	Name		ID	D	
---------	------	--	----	---	--

OH