4	2
20 000	598 27
ขอ-ผเด	รห์สรห์ส

มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

ข้อสอบปลายภาค: ภาคการศึกษาที่ 1

ปีการศึกษา: 2554

วันที่สอบ: 5 ตุลาคม 2554

เวลา: 9.00-12.00

วิชา: 230-610 เทอร์โมไดนามิกส์วิศวกรรมเคมีขั้นสูง

ห้องสอบ: S203

ทุจริตในการสอบ โทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาค การศึกษา

- ห้ามหยิบยืมเอกสารจากผู้อื่น

- เขียนชื่อ และรหัสทุกหน้า

- กรณีกระดาษคำตอบไม่พอให้ใช้ด้านหลังได้

- ใช้ดินสอทำข้อสอบได้

- ข้อสอบมีทั้งหมด 4 ข้อ (10 หน้า) ข้อละ 30 คะแนน

ข้อ	คะแนนเต็ม	คะแนนที่ได้
1	30	
2	30	
3	30	
4	30	
7	120	

ผศ.ดร. ลือพงศ์ แก้วศรีจันทร์ ผู้ออกข้อสอบ

- 1. (30 points) (a) Using regular solution model to compute activity coefficients of benzene (1) and isopentane (2) of the binary mixture of benzene- isopentane at $x_1 = 0.7$ and temperature of 45 $^{\circ}$ C.
 - (b) Using regular solution model from part (a) calculate van Laar parameters for the binary mixture of benzene- isopentane at $x_1 = 0.5$ and temperature of 45 $^{\circ}$ C.

2. (30 points) (a) At 64.3 °C and P = 760 mmHg the system methanol(1) -methyl ethyl ketone (2) forms an azeotrope containing 84.2 mol % of methanol. Use these data to determine the parameters in the following activity coefficient model:

$$\ln \gamma_1 = x_2^2 \left[w_{12} + u_{12} (3 - 4x_2) \right]$$

$$\ln \gamma_2 = x_1^2 \left[w_{12} + u_{12} (3 - 4x_1) \right]$$

The constants in the Antoine equation are given as follows:

$$\log P^{V}$$
 (mmHg) = $A - B/[C + t(\text{celcius})]$

	А	В	С
Methanol (1)	7.8763	1474.110	230.0
Methyl ethyl ketone (2)	6.97421	1209.600	216.0

(b) Calculate dew point conditions (pressure and composition) of the vapor mixture at 78 mol % of methanol and 55 °C. You have to use the activity coefficient model from part (a).

3. (30 points) You are interested in the methanol synthesis reaction:

$$CO(g) + 2H_2(g) = CH_3OH(g)$$

If the temperature and pressure of the reactor will be controlled at 353.15 K and 3 bar, respectively, and the feed of reactants will be accorded to stoichiometric ratio. Calculate the equilibrium extent of reaction (ξ_{eq}) (neglecting fugacity coefficients of all components). *Hint:* Use equation 13.1.22b for obtaining chemical equilibrium constant at reacting temperature.

4. (30 points) Hydrogen necessary for ammonia production is usually produced from natural gas via steam reforming: $CH_4(g) + H_2O(g) = CO(g) + 3H_2(g)$ If a reactor operating adiabatically is fed with an equimolar mixture of methane and steam and 15% conversion is obtained, calculate the temperature of the product stream leaving the reactor. Methane enters at 1 bar and 370 $^{\circ}$ C, and the steam enters at 1 bar and 900 $^{\circ}$ C. The reactor is operated at a pressure of 1 bar.