บหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 2 สอบวันที่ 20 ธันวาคม 2554 ปีการศึกษา 2554 เวลา 9:00-12:00 น ห้องสอบ Robot

วิชา 220-622 Groundwater Flow Modeling

ข้อกำหนด

- 1. ข้อสอบ มี 4 ข้อ จำนวน 5 หน้า คะแนนเต็ม 200 คะแนน ให้ทำทุกข้อ
- 2. อนุญาตให้ Lecture note เข้าห้องสอบได้
- 3. ให้นำเครื่องคิดเลขทุกชนิดเข้าห้องสอบได้
- 4. ให้นักศึกษาตอบในสมุดคำตอบ

_	
لم	La La
ดีเล	59224
DO	รหสรหสรหส

ข้อ	คะแนนเต็ม	คะแนนที่ได้
1	40	
2	60	
3	50	
4	50	
Total	200	

ออกข้อสอบโคย อ. ธนิต เฉลิมยานนท์

14 **ธ**.ค. 2554

สู่ ชาก	รหัส
44	

1. Definitions

Briefly define and explain terms shown in each question. Each definition is worth 5 points.

- 1.1 Central difference approximation
- 1.2 Laplace's equation
- 1.3 Specific storage
- 1.4 Successive Over-Relaxation
- 1.5 Explicit finite difference approximation
- 1.6 Conceptual model
- 1.7 Dupuit's assumptions
- 1.8 Derichlet and Neumann conditions
- 2. Equations and Finite Difference Approximation
 - 2.1 (10 points) Write the governing equation for two-dimensional, steady state flow in homogeneous, but anisotropic unconfined aquifer under Dupuit assumptions. Include a source term to simulate recharge to the aquifer.
 - 2.2 (15 points) The mass balance equation for flow through an representative elementary volume is

$$div q = 0$$

- (a) Write this equation in three dimensions using partial differentials.
- (b) Write Darcy's law in vector notation and combine it with $\operatorname{div} q = 0$ to derive the general governing equation groundwater flow. What is the name of the equation just derived.
- 2.3 (20 points) Write a finite difference expression for the following equation, where Dx, Dy, v are constant but $\Delta x \neq \Delta y$

$$D_{x} \frac{\partial^{2} c}{\partial x^{2}} + D_{y} \frac{\partial^{2} c}{\partial v^{2}} - v \frac{\partial c}{\partial x} = 0$$

ชื่อ รหัส.....

Also write finite difference formula that $c_{i,j}$ can be computed for the specific case where $D_x=D_y=D$ and $\Delta x=\Delta y=a$

- 2.4 (15 points) From conservation of mass, derive governing equation of transient flow for 2-D unconfined aquifer with sink/source term and also write explicit finite difference approximation for this equation.
- 3. System Conceptualization
 - 3.1 (25 points) Develop a mathematical model (governing equation and boundary conditions) for the flow system illustrated in the sketch below.
 Indicate the locations of the boundary conditions mathematically rather than by labeling a sketch. Note that R and q must be treated as boundary conditions.

A sketch shows a profile view of a heterogeneous, anisotropic unconfined aquifer under steady state conditions. The q is outflow flux.

Fig.1 An aquifer system for problem 3.1

- 3.2 (25 points) The unconfined island recharge problem, with addition of a newly installed pumping well at location B as illustrated in the sketch below. Sea water level is 100 m from datum.
 - (a) Write the governing equation that you would use to solve the transient problem to predict the decline in head as a result of pumping.

- (b) How would you generate the initial conditions in term of head for transient problem.
- (c) Write the equation for computing a water balance in terms of inflow, outflow and storage for this transient problem.

Fig. 2 Island recharge problem for problem 3.2

4. Head and Flux Determination

4.1 (25 points) Consider the 6 nodes shown below. Suppose these nodes are the 6 nodes in the upper left hand corner of a two-dimensional horizontal finite difference grid of a confined aquifer. The nodes in the top row are specified head cells and the nodes in the bottom row are active cells in a steady-state simulation. The numbers in each cell are the head values (block-centered) . Suppose we wish to switch from specified head to specified flux boundary conditions. Calculate the values of the flux (m³/day) that you would assign to boundary cell A and B. Be sure to indicate the sign of the flux, where (+) indicates inflow to the model and (-) indicates withdrawal of water from the model. Assume that the aquifer is isotropic and transmissivity is 300 m²/day, and the nodes are equally spaced such that $\Delta x = \Delta y = 100$ m.

Fig.3 Domain for flux calculation (numbers in the cell indicating the head at each cell)

4.2 (25 points) A groundwater flow domain where observed heads (in meters) are shown for each node. Suppose this domain is a 2-D steady-state confined aquifer where Laplace's equation is applied. Calculate the heads at node A and B.

Fig. 4 A confined aquifer domain