al	
บอ-สกุล	รหัส
	2 M M M M M M M M M M M M M M M M M M M

มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

ข้อสอบปลายภาค: ภาคการศึกษาที่ 2

ปีการศึกษา: 2554

วันที่สอบ: 26 กุมภาพันธ์ 2555

เวลา: 13.30-16.30

วิชา: 230-510 สมดุลวัฏภาคของไหล

ห้องสอบ: R201

ทุจริตในการสอบ โทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาค การศึกษา

- อนุญาตให้นำเอกสาร ดำรา พจนานุกรมอิเล็กโทรนิก และเครื่องคิดเลขทุกรุ่น เข้าห้องสอบได้
- ห้ามหยิบยืมเอกสาร และเครื่องคิดเลขจากผู้อื่น
- เขียนชื่อ และรหัสทุกหน้า
- กรณีกระดาษคำตอบไม่พอให้ใช้ด้านหลังได้
- ใช้ดินสอทำข้อสอบได้
- ข้อสอบมีทั้งหมด 5 ข้อ (9 หน้า รวมปก)

ข้อ	คะแนนเต็ม	คะแนนที่ได้
1	30	
2	30	
3	40	
4	30	
5	25	
	155	

ผศ.ดร. ลือพงศ์ แก้วศรีจันทร์ ผู้ออกข้อสอบ ชื่อ-สกุล.....รหัส.....รหัส......

1. (30 points) The activity coefficient for species 2 in a binary mixture can be represented by $\ln \gamma_2 = ax_1^2 + bx_1^3 + cx_1^4$, where a, b and c are concentration-independent parameters. What is the expression for $\ln \gamma_1$ in the terms of these same parameters?

ชื่อ-สกุล.....รหัส.....รหัส......

2. (30 points) Show that $\ln \gamma_{\pm} = -1.17 |z_{+}z_{-}| \sqrt{I_{m} (\text{mol kg}^{-1})}$ for an aqueous solution at 25 °C, where I_{m} is the ionic strength expressed in terms of molality. Take relative permittivity of water (\mathcal{E}_{r}) is equal to 78.54. The following constants and some definitions are list:

 ε = permittivity of medium = $\varepsilon_0 \varepsilon_r$

 ε_0 = permittivity of vacuum = 8.85419 x10⁻¹² C² N⁻¹ m⁻²

 N_A = Avogadro number = 6.0221367 x 10²³ molecules/ mol

 $k_B = 1.380658 \times 10^{-23} \text{ J K}^{-1}$

 $R = 8.314510 \text{ J mol}^{-1} \text{ K}^{-1}$

e = proton charge = $1.60217733 \times 10^{-19}$ C

ชื่อ-สกุล.....รหัส.....รหัส......

- 3. (40 points) (a) Calculate mean ionic activity coefficient (γ_{\pm}) of electrolyte solution of 0.35 M of Na₂SO₄ using Davies equation to evaluate activity coefficients.
 - (b) Calculate activity coefficient **at infinite dilution** of methanol and water at 50°C using Wilson equation which given interaction parameters on text book (page 174):

[Hint $a_{12} = \lambda_{12} - \lambda_{22}$ and $a_{21} = \lambda_{12} - \lambda_{11}$; R = 1.98721 cal mol^{-1} K^{-1}]

ชื่อ-สกุล.....รหัส.....รหัส.....

4. (30 points) For hydrofluoric acid (HF), find the pH of a solution made from 1.000 mol of this acid and 1.000 kg of water at 298.15 K. Do the calculation twice: once assuming that γ_{\pm} equal unity, and once using the modified DHLL (equation 6.24 in textbook) to estimate γ_{\pm} .[Assume: obtained volume of the solution is 1 liter.]

ชื่อ-สกล	
	 รหัส

- 5. (25 points) Write down the proton balance and charge balance of the following chemical equilibrium systems.
 - (a) Put $NaHCO_3$ into pure water
 - (b) Put Na_2SO_4 and H_3AsO_4 into pure water