| al | | |---------|---| | บอ-สกุล | รหัส | | | 2 M M M M M M M M M M M M M M M M M M M | ## มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์ ข้อสอบปลายภาค: ภาคการศึกษาที่ 2 ปีการศึกษา: 2554 วันที่สอบ: 26 กุมภาพันธ์ 2555 เวลา: 13.30-16.30 วิชา: 230-510 สมดุลวัฏภาคของไหล ห้องสอบ: R201 ## ทุจริตในการสอบ โทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาค การศึกษา - อนุญาตให้นำเอกสาร ดำรา พจนานุกรมอิเล็กโทรนิก และเครื่องคิดเลขทุกรุ่น เข้าห้องสอบได้ - ห้ามหยิบยืมเอกสาร และเครื่องคิดเลขจากผู้อื่น - เขียนชื่อ และรหัสทุกหน้า - กรณีกระดาษคำตอบไม่พอให้ใช้ด้านหลังได้ - ใช้ดินสอทำข้อสอบได้ - ข้อสอบมีทั้งหมด 5 ข้อ (9 หน้า รวมปก) | ข้อ | คะแนนเต็ม | คะแนนที่ได้ | |-----|-----------|-------------| | 1 | 30 | | | 2 | 30 | | | 3 | 40 | | | 4 | 30 | | | 5 | 25 | | | | 155 | | ผศ.ดร. ลือพงศ์ แก้วศรีจันทร์ ผู้ออกข้อสอบ ชื่อ-สกุล.....รหัส.....รหัส...... 1. (30 points) The activity coefficient for species 2 in a binary mixture can be represented by $\ln \gamma_2 = ax_1^2 + bx_1^3 + cx_1^4$, where a, b and c are concentration-independent parameters. What is the expression for $\ln \gamma_1$ in the terms of these same parameters? ชื่อ-สกุล.....รหัส.....รหัส...... 2. (30 points) Show that $\ln \gamma_{\pm} = -1.17 |z_{+}z_{-}| \sqrt{I_{m} (\text{mol kg}^{-1})}$ for an aqueous solution at 25 °C, where I_{m} is the ionic strength expressed in terms of molality. Take relative permittivity of water (\mathcal{E}_{r}) is equal to 78.54. The following constants and some definitions are list: ε = permittivity of medium = $\varepsilon_0 \varepsilon_r$ ε_0 = permittivity of vacuum = 8.85419 x10⁻¹² C² N⁻¹ m⁻² N_A = Avogadro number = 6.0221367 x 10²³ molecules/ mol $k_B = 1.380658 \times 10^{-23} \text{ J K}^{-1}$ $R = 8.314510 \text{ J mol}^{-1} \text{ K}^{-1}$ e = proton charge = $1.60217733 \times 10^{-19}$ C ชื่อ-สกุล.....รหัส.....รหัส...... - 3. (40 points) (a) Calculate mean ionic activity coefficient (γ_{\pm}) of electrolyte solution of 0.35 M of Na₂SO₄ using Davies equation to evaluate activity coefficients. - (b) Calculate activity coefficient **at infinite dilution** of methanol and water at 50°C using Wilson equation which given interaction parameters on text book (page 174): [Hint $a_{12} = \lambda_{12} - \lambda_{22}$ and $a_{21} = \lambda_{12} - \lambda_{11}$; R = 1.98721 cal mol^{-1} K^{-1}] ชื่อ-สกุล.....รหัส.....รหัส..... 4. (30 points) For hydrofluoric acid (HF), find the pH of a solution made from 1.000 mol of this acid and 1.000 kg of water at 298.15 K. Do the calculation twice: once assuming that γ_{\pm} equal unity, and once using the modified DHLL (equation 6.24 in textbook) to estimate γ_{\pm} .[Assume: obtained volume of the solution is 1 liter.] | ชื่อ-สกล | | |----------|----------| | |
รหัส | - 5. (25 points) Write down the proton balance and charge balance of the following chemical equilibrium systems. - (a) Put $NaHCO_3$ into pure water - (b) Put Na_2SO_4 and H_3AsO_4 into pure water