\qquad
Name: \qquad
คณะวิศวกรรมศาสตร์
มหาวิทยาลัยสงขลานครินทร์

การสอบนลลาษถาค ประจำภาคการศึกษาที่ ๒ วันทุธที่ ๒๒ กุมภาพันธ์ พ.ศ. ๒๕๕๕ วิขา ๒๑๖-๙๒๔ : กลศาสตร์ครื่องจักรกล

ประจำปีการศึกษา ๒๕๕๔
เวลา ต๓.ต๓-๑ื.ต๐ น.
ห้องสอบ $\mathrm{S} 201,5203$

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

คำสั่ง

๑. ข้อสอบมีทั้งหมด ๕ ข้อ คะแนนเต็ม ๑๐๐ คะแนน ให้ทำลงในข้อสอบทุกข้อ
๒. อนุญาตให้ไช้เครื่องคิดเลขได้
๓. ให้ใช้เครื่องมือเขียนแบบได้
๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
๑	๒०	
๒	๒०	
๓	๒०	
๔	๒०	
๕	๒०	
รวม	๑๐०	

Name: \qquad
\qquad

1) Construct the displacement diagram and the cam profile for a plate cam with a translating knife-edge follower that rises 2 cm with simple harmonic motion in 90° of clockwise cam rotation, then dwells for 60°, returns with simple harmonic motion in 90°, and dwells for 120°. The prime-circle radius is 30 mm .

Name: \qquad
\qquad
2) (a) In the clock mechanism shown in the figure, shaft A drives the second hand (S) with an 8-teeth gear on it. The gear is meshed with the big gear on shaft B with another 8 -teeth gear transmitting the motion to the 64-teeth gear on shaft C. The minute hand (M) is connected to shaft C. The $\mathbf{2 8}$-teeth gear on shaft C is meshed with the big gear on shaft D with another 8 -teeth gear transmitting the motion to the 64-teeth gear on shaft E, which is connected to the hour hand (H). Determine the number of teeth of the big gear on shaft C and that of the big gear on shaft D.

(b) For the planetary gear train shown, if gear 2 is rotating with $\omega_{2}=200 \mathrm{rpm}$ clockwise and arm 3 is rotating with $\omega_{3}=300 \mathrm{~mm}$ counterclockwise, determine the rotational speed and direction of gear $7, \omega_{7}$.

\qquad
3) For the mechanism shown in the figure, sketch the free body diagrams of each link. What force \mathbf{P} is necessary for equilibrium if $\mathrm{M}_{12}=15 \mathrm{~N}-\mathrm{m}$? Neglect the friction between the slider and ground links.

\qquad
\qquad
4) Link 2 of the mechanism shown has a mass of $m_{2}=0.5 \mathrm{~kg}$, and link 3 has a mass $m_{3}=0.4 \mathrm{~kg}$ and moment of inertia about its centroid G_{3} as $I_{G 3}=450 \mathrm{~kg} \cdot \mathrm{~mm}^{2}$. Link 2 is moving to the left with a constant speed of $40 \mathrm{~mm} / \mathrm{s}$. At this instant $a_{\mathrm{G3}}=46.21 \mathrm{~mm} / \mathrm{s}^{2}$ (direction as shown in the figure) and $\alpha_{3}=1.23$ $\mathrm{rad} / \mathrm{s}^{2}$ counterclockwise. The contact at each slider joint has no friction. Draw the inertia force of link 3 and determine force \mathbf{P} acting on link 2.

Name: \qquad
\qquad
5) A rotor has unbalance masses $m_{1}=20 \mathrm{~g}$, and $m_{2}=15 \mathrm{~g}$, located at radius 0.020 m on a shaft supported at the bearings A and B, as shown. Determine two correction masses, and their angular locations to be placed at the radius of 0.020 m in the planes C and D so that the dynamic load on the bearings will be zero.

