## คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำการศึกษาที่ 2 วันอังคาร ที่ 21 กุมภาพันธ์ พ.ศ. 2555 ปีการศึกษา 2554 เวลา : 9.00 – 12.00 **ห**.

วิชา : 237 – 321 Chemical Metallurgy

ห้อง : A400,Robot

รหัส

## <u>คำสั่ง</u>

- 1. ทำทุกข้อในที่ว่างที่เว้นไว้ให้
- อนุญาตให้นำเอกสารทุกชนิดเข้าห้องสอบได้
- อนุญาตให้นำเครื่องคิดเลขเข้าห้องสอบได้

ทุจริตในการสอบโทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

| ข้อ | คะแนนเต็ม | คะแนนที่ได้ |
|-----|-----------|-------------|
| 1   | 19        |             |
| 2   | 10        |             |
| 3   | 17        |             |
| 4   | 8         |             |
| 5   | 15        |             |
| 6   | 10        |             |
| 7   | 10        |             |
| 8   | 12        |             |
| 9   | 28        |             |
| รวม | 129       |             |

ชื่อ\_\_\_\_\_

รศ.ดร.พิษณุ บุญนวล ผู้ออกข้อสอบ ชื่อ\_\_\_\_\_รหัส\_\_\_\_\_

3

- จงอธิบายคำหรือโจทย์ต่อไปนี้ (ข้อละ 2 คะแนน ยกเว้นที่เขียนเป็นอย่างอื่น) วาดรูป ประกอบด้วยหากช่วยให้เข้าใจง่ายขึ้น
- 1.1 Slag แตกต่างจาก Matte อย่างไร

1.2 Bouduard reaction

- 1.3 วัตถุดิบที่ป้อนเข้าเตา Blast furnace ในการผลิตเหล็กมีอะไรบ้าง
- 1.4 ในการคำนวณเรื่อง Blast furnace นั้น มีเกณฑ์สมการสมดุลขององค์ประกอบตะกรัน (slag) อย่างไร
- 1.5 เขียนปฏิกิริยา Reduction ที่สำคัญที่ใช้เป็นตัวรับอิเลคตรอนในกระบวนการ Leaching ที่ สำคัญ 2 ปฏิกิริยา

ชื่อ\_\_\_\_\_รหัส\_\_\_

1.6 Heaped Leaching (3 คะแนน)

1.7 จงยืนยันจากสมการที่ให้ว่าทำไมกระบวนการ Cyanidation จึงควรทำที่ พีเอช สูงกว่า 9.5
 H<sup>+</sup> + CN<sup>-</sup> = HCN (gas) log K = 9.21 (6 คะแนน)

อธิบายถึงว่าเราจะประยุกต์ใช้การWater leach กับแร่ตะกั่ว(Pbs) กับแร่นิเกิล(NiS) เขียน
 Flow Sheet และ ให้เหตุผลประกอบ
 (10 คะแนน)

## <u>ข้อมูล</u>

| สารประกอบ | Solubility                  |  |  |  |  |
|-----------|-----------------------------|--|--|--|--|
| PbSO4     | 0.045 g/L                   |  |  |  |  |
| NiSO4     | 40.8 g/100gH <sub>2</sub> O |  |  |  |  |
| อื่นๆ     | ด่ำมาก                      |  |  |  |  |

|    |                                                              |   |    |   | ชื่อ                            |   |                 | รหัส |   |      |     |
|----|--------------------------------------------------------------|---|----|---|---------------------------------|---|-----------------|------|---|------|-----|
| 3. | 3. จากสมการและรูปสำหรับเตา Blast Furnace ที่ให้มา จงตอบคำถาม |   |    |   |                                 |   | าม              |      |   |      |     |
|    | 3Fe <sub>2</sub> O <sub>3</sub>                              | + | со | = | 2Fe <sub>3</sub> O <sub>4</sub> | + | CO <sub>2</sub> | к    | = | 1000 | (1) |
|    | Fe <sub>3</sub> O <sub>4</sub>                               | + | со | = | 3'FeO`                          | + | CO <sub>2</sub> | к    | = | 4    | (2) |
|    | ′FeO`                                                        | + | со | = | Fe                              | + | CO <sub>2</sub> | к    | = | 0.45 | (3) |
|    |                                                              |   |    |   |                                 |   |                 |      |   |      |     |



3.1 จงแสดงให้เห็นว่าทำไมปฏิกิริยา (3) ที่เกิดในโซน A เป็น Rate-controlled reaction **(5 คะแนน)** 

ุรหัส\_

6

3.2 คำนวณ Mass balance เฉพาะ โซน A (6 คะแนน)

ชื่อ\_\_\_\_\_รหัส\_\_\_\_\_

3.2 คำนวณ Mass balance เฉพาะ โซน A (6 คะแนน)

3.3 ให้คำนวณ Mss balance สำหรับ Zone B และพิสูจน์ว่าปฏิกิริยาใน Zone B เป็นไปได้หรือไม่
 (6 คะแนน)

4. จงคำนวณค่า log K ของปฏิกิริยา Half cell reaction ต่อไปนี้ (ข้อละ 4 คะแนน)
 4.1 M<sup>2+</sup> + 2e<sup>-</sup> = M E<sup>o</sup> = -0.220 Volts

4.2  $M^{3+}$  + 3e = M  $E^{\circ}$  = -0.660 Volts



ชื่อ

(15 คะแนน)

ที่มา: Osseo-Asare, K. et al, 1984

\_\_\_\_\_ \_\_รหัส\_ 6. จงเขียน Eh – pH diagram ของ Au และ Au  $(CN)_2$  จากข้อมูลต่อไปนี้ กำหนดให้ [CN] = 10<sup>-4</sup> mole/l และ [Au] = 10<sup>-4</sup> mole/l

ชื่อ\_

| (1) | $Au^+ + e^-$   | = | Au                    | $\log K = 28.62$ |
|-----|----------------|---|-----------------------|------------------|
| (2) | $Au^+ + 2CN^-$ |   | Au(CN) <sub>2</sub> - | $\log K = 38.10$ |
|     |                |   |                       | (10 คะแนน)       |

 ในการแต่งแร่ทองคำด้วยCyanidation Process ที่เหมือง บริษัทอัครไมนิ่ง จำกัด จังหวัด พิจิตร เป็นแบบ CIL ในขณะที่กระบวนการของเหมืองทองคำบริษัททุ่งคำจำกัดจังหวัดเลย เป็นแบบ CIP

จงอธิบายความแตกต่างของทั้งสองกระบวนการและเขียน Flow sheet ง่าย ๆ แสดง ประกอบด้วย **(10 คะแนน)** 

\_\_\_\_

 จงอธิบายวิธีการละลายแร่ (Dissolution) ต่างๆ มาเป็นข้อๆ พร้อมยกตัวอย่างประกอบ (12 คะแนน)

\_\_\_\_\_

ชื่อ\_\_\_\_รหัส\_\_\_\_ 9. 9.1กระบวนการถลุงเหล็กที่เรียกว่า Wiberg Process เป็นอย่างไร จงอธิบาย **(8 คะแนน)** 



9.2 .ในการถลุงที่ 1100 °C จงตอบคำถามและคำนวณ

- n. Equilibrium% CO =
- ถ้าบรรยากาศในเตามีความดันแก๊สรวม 2 atm
  จงแสดงให้เข้าใจได้ว่าจะมีแก๊ส CO เพียงพอในการ Reduce เหล็ก FeO

ชื่อ\_\_\_\_\_รหัส\_\_

ค. จงคำนวณสัดส่วนของ Exit gas ที่แบ่งออกไปเข้า Carburetor **(20 คะแนน)** 

\_\_\_\_